NAME G	RADING	KEY
* ' * * * ' *		

STUDENT ID .

RECITATION INSTRUCTOR.

RECITATION TIME _

Page 1	/12
Page 2	/30
Page 3	/25
Page 4	/33
TOTAL	/100

DIRECTIONS

- 1. Write your name, 10-digit PUID, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3 and 4.
- 2. The test has four (4) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes, calculators or any electronic devices may be used on this exam.
- 1. Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation $\sec x = 2\sin x$.

Sec
$$x = 2 \sin x$$
 $\rightarrow \frac{1}{\cos x} = 2 \sin x$ $1 = 2 \sin x \cos x$ (2)
 $\sin 2x = 1$ (2)

$$\sin 2x = 1 (2)$$

$$2x = \frac{\pi}{2}, \frac{5\pi}{2}$$

$$x = \frac{\pi}{4}, \frac{5\pi}{4}$$

(6) 2. If $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{x-1}$, find the functions $f \circ g$ and $g \circ f$ and their domains.

$$(f \circ g)(x) = f(g(x)) = \sqrt{\frac{1}{x-1}} = \frac{1}{\sqrt{x-1}}$$

$$(g \circ f)(x) = g(f(x)) = \frac{1}{(x-1)}$$
 $x \ge 0$, $x \ne 1$

$$(f \circ g)(x) = \frac{1}{\sqrt{x-1}} \quad \text{(2)}$$

$$\text{domain:} \quad (1, \infty) \quad \text{(1)}$$

$$(g \circ f)(x) = \frac{1}{\sqrt{x} - 1} \quad (2)$$

domain: [0,1) U(1,00)

6

3. Find a formula for the inverse of $f(x) = 2x^3 + 3$.

$$X = \int_{-1}^{1} (y)$$

$$Y = \int_{-1}^{1} (y)$$

$$Y = \int_{-1}^{1} (y)$$

$$Y = \int_{-1}^{1} (y)$$

-3pts for f(x) = 1 4-3

$$f^{-1}(x) = \sqrt[3]{\frac{\times -3}{2}} \qquad \boxed{6}$$

(4) 4. Solve the equation $e^{2x+3} - 7 = 0$ for x.

$$e^{2x+3}$$
 7 = 0
 e^{2x+3} = 7 = $\ln e^{2x+3}$ = $\ln 7$
 $2x+3$ = $\ln 7$

- $x = \frac{4n7 3}{3}$ 14
- (6) 5. If $f(x) = \begin{cases} cx^2 & \text{if } x \leq 2 \\ c x & \text{if } x > 2 \end{cases}$, find the value of the constant c for which $\lim_{x \to 2} f(x)$

exists.

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} cx^{2} = c4$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (c-x) = c-2$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} cx^{2} = c4$$

$$c = \frac{2}{3}$$

- 6
- 6. Find the equations of the vertical and horizontal asymptotes of the graph of $y = \frac{x^2 + 4}{x^2 - 1}$.

$$\lim_{x \to 1^+} \frac{x^2 + 4}{x^2 - 1} = +\infty$$
 : x=1 is V, A.

$$\lim_{x \to \infty} \frac{x^2 + 4}{x^2 - 1} = -\infty \quad \therefore \quad x = -1 \text{ is } V$$
Vertical asymptotes
$$\lim_{x \to \infty} \frac{x^2 + 4}{x^2 - 1} = 1 \quad \lim_{x \to \infty} \frac{x^2 + 4}$$

Horizontal asymptotes

7. Find the exact numerical value of the following: (a) $e^{2 \ln 3} = e^{2 \ln 3} = 3^2$

(a)
$$e^{2\ln 3} = e^{\ln 3^2} = 3^2$$

2ph each

(b) $\log_{10} 25 + \log_{10} 4 = \log_{10} \left[(2.5) \cdot 4 \right] =$ = log 100 = 2

(c) $\tan(\pi e^{-\ln 4}) = \tan \left(\frac{1}{e^{\ln 4}} \right) = \tan \frac{\pi}{4} = 1$

1

(d) $\cos(\ln 1) = \cos 0 = 1$

(15)8. For each of the following, fill in the boxes below with a finite number, or one of the symbols $+\infty$, $-\infty$, or DNE (does not exist). It is not necessary to give reasons for your answers. 3 pts each

(a) $\lim_{h\to 0} \frac{(2+h)^3-8}{h} = \lim_{h\to 0} \frac{2^3+32^2h+3\cdot2h+h-8}{h}$

NPC

12

 $=\lim_{h\to h} (12+6h+h^2)=12$

(3)

(b) $\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t} \right) = \lim_{t \to \infty} \frac{t^2 + t - t}{t (t^2 + t)}$ - lim 1 - 1

(3)

(c) $\lim_{x \to (-4)^-} \frac{|x+4|}{x+4} =$ $x \to (-4)^{-1} x + 4$ $x < -4 \to x + 4 < 0 \to |x + 4| = -(x + 4)$ $x \to (-4)^{-1} \frac{|x + 4|}{x + 4} = \lim_{x \to (-4)^{-1}} \frac{-(x + 4)}{x + 4} = 1$

(3)

(d) $\lim_{x \to 0} x^2 \sin \frac{\pi}{x} = -1 \le \sin \frac{\pi}{x} \le 1$ $-x^2 \le x^2 \sin \frac{\pi}{x} \le x$ $\cos x \to 0$ $\sin \frac{x - 1}{x^2(x + 3)} = 0$ $\cos x \to 0$

(3) 0

- (4)9. True or False. (Circle T or F)
 - (a) The function f(x) = |x 1| is continuous at x = 1.

- (b) The function f(x) = |x| is differentiable at x = 0.
- (c) The function f(x) = |x| is differentiable at x = -1.

(d) The function $g(x) = \ln(x-1)$ is continuous at x = 0.

Τ \mathbf{F}

6

15

10. Find an equation of the tangent line to the curve $y = \frac{2x}{x+1}$ at the point (1,1).

 $\frac{dy}{dx} = \frac{(x+1)^2 - 2x \cdot 1}{(x+1)^2} = \frac{2}{(x+1)^2} = 2$

2 2 2

 $y-1 = \frac{1}{2}(x-1)$ 2

ggdddh gallda

16

4

14

(11) 11. Find the derivative of the function $f(x) = \frac{1}{x^2}$ using the definition of the derivative $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$. (0 credit for using a formula for the derivative).

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{(x+h)^{2}} - \frac{1}{x^{2}}}{h} = \lim_{h \to 0} \frac{\frac{1}{(x+h)^{2}} - \frac{1}{x^{2}}}{h} = \lim_{h \to 0} \frac{-2xh - h}{h(x+h)^{2}x^{2}} = \lim_{h \to 0} \frac{-2x - h}{(x+h)^{2}x^{2}} = \lim_{h \to 0} \frac{-2x - h}{(x+h)^{2}x^{2}} = \frac{2}{x^{3}}$$

(6) 12. For what values of x is the tangent line to the curve $y = 3x^2 - 1$ parallel to the line x - 2y = -2.

Slope of line
$$x-2y=-2$$
 is $\frac{1}{2}$

$$\frac{dy}{dx} = 6 \times 6 \times = \frac{1}{2}$$

$$x = \frac{1}{12}$$

$$x = \frac{1}{12}$$

(16) 13. Find the derivatives of the following functions. (It is not necessary to simplify).

(a)
$$v = t^2 - \frac{1}{4\sqrt{t^3}}$$
.
= $t^2 - \frac{1}{4}t^{-\frac{3}{2}}$

$$\frac{dv}{dt} = 2t + \frac{3}{8}t^{-\frac{5}{2}}$$

(b)
$$y = (1 - e^x) \tan x$$
.

$$\frac{\partial y}{\partial x} = (1 - e^{x}) \sec^{2} x - e^{x} \tan x$$
 [4]

(c)
$$f(x) = x^{\pi} + e^2$$
.

$$f'(x) = T \times^{T-1}$$

(d)
$$y = \frac{1 + \sin x}{x + \cos x}.$$

$$\frac{dy}{dx} = \frac{(x + \cos x)\cos x - (1 + \sin x)(1 - \sin x)}{(x + \cos x)^2}$$