MATH 162 – SPRING 2004 – THIRD EXAM SOLUTIONS

Useful formulas:

Arc length

$$L = \int_{a}^{b} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

Area of a surface of revolution

$$S = \int_{a}^{b} 2\pi y(t) \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

Some power series:

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \text{ provided } |x| < 1$$

1) Find which series equals the definite integral $\int_0^1 \sin(x^2) dx$

A)
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+2)!}$$

B)
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+3)!}$$

C)
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!(4n+3)}$$

D)
$$\sum_{n=0}^{\infty} (-1)^{n-1} \frac{1}{(2n+5)!}$$

E)
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!(4n+2)}$$

Solution: Using the formula given above for the Maclaurin series of $\sin x$, but with x replaced by x^2 , we have

$$\sin(x^2) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{(2n+1)!}$$

Therefore

$$\int_0^1 \sin(x^2) \, dx = \sum_{n=0}^\infty (-1)^n \int_0^1 \frac{x^{4n+2}}{(2n+1)!} \, dx = \sum_{n=0}^\infty (-1)^n \frac{1}{(4n+3)(2n+1)!}.$$

The correct answer is C.

2) The power series expansion of $\frac{1}{(1+x)^2}$ is

A)
$$\sum_{n=0}^{\infty} (-1)^n x^n$$

B)
$$\sum_{n=0}^{\infty} (-1)^n nx^{n-1}$$

C)
$$\sum_{n=0}^{\infty} (-1)^{n-1} nx^{n-1}$$

D)
$$\sum_{n=0}^{\infty} (-1)^{n-1} x^n$$

E)
$$\sum_{n=0}^{\infty} x^n$$

Solution: We know that

$$\frac{1}{(1+x)^2} = -\frac{d}{dx} \left(\frac{1}{1+x} \right)$$

and by the formula given above we have

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-1)^n x^n.$$

Therefore

$$\frac{1}{(1+x)^2} = -\frac{d}{dx}\left(\frac{1}{1+x}\right) = \frac{d}{dx}\sum_{n=0}^{\infty} (-1)^n x^n = \sum_{n=0}^{\infty} n(-1)^n x^{n-1}.$$

Notice that the term corresponding to n=0 is zero. One could also state that

$$\frac{1}{(1+x)^2} = \sum_{n=1}^{\infty} n(-1)^n x^{n-1}.$$

The correct answer is B.

3) If
$$(1+x)^{1/3} = c_1 + c_2x + c_3x^2 + \dots$$
 then c_3 is equal to

A)
$$\frac{1}{3}$$

B)
$$\frac{1}{5}$$

- C) $\frac{1}{9}$
- D) $\frac{1}{12}$
- E) $-\frac{1}{9}$

Solution: The binomial theorem says that for any k real

$$(1+x)^k = \sum_{n=0}^{\infty} \frac{k(k-1)(k-2)...(k-n+1)}{n!} x^n.$$

So the term in x^2 is $\frac{k(k-1)}{2}$. In this case $k=\frac{1}{3}$ so $c_3=\frac{\frac{1}{3}(\frac{1}{3}-1)}{2}=-\frac{1}{9}$. The correct answer is E.

4) The MacLaurin series of $x \cos(2x)$ is

A)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!}$$

B)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{n+1} x^{2n+1}}{(2n)!}$$

C)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{nx^{2n}}}{(2n)!}$$

D)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{n+1} x^{2n+1}}{(2n)!}$$

E)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^n x^{2n+1}}{(2n)!}$$

Solution: Using the formula provided above for the MacLaurin series of $\cos x$, but with x replaced by 2x we have

$$\cos 2x = \sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n (2)^{2n} x^{2n}}{(2n)!}$$

Multiplying this by x gives

$$x\cos 2x = \sum_{n=0}^{\infty} \frac{(-1)^n (2)^{2n} x^{2n+1}}{(2n)!}.$$

The correct answer is should have been C, however, as you can see, due to a typo the question had no soution. Everyone was given 10 points for this question.

5) The Taylor polynomial $T_2(x)$ for $f(x) = \sin x$ at $a = \frac{\pi}{3}$ is

A)
$$\frac{\sqrt{3}}{2} + \frac{1}{2}(x - \frac{\pi}{3}) - \frac{\sqrt{3}}{4}(x - \frac{\pi}{3})^2$$

B)
$$\frac{\sqrt{3}}{2} + \frac{1}{2}(x - \frac{\pi}{3}) + \frac{\sqrt{3}}{4}(x - \frac{\pi}{3})^2$$

C)
$$\frac{1}{2} - \frac{\sqrt{3}}{2}(x - \frac{\pi}{3}) - \frac{1}{4}(x - \frac{\pi}{3})^2$$

D)
$$\frac{1}{2} + \frac{\sqrt{3}}{2}(x - \frac{\pi}{3}) + \frac{1}{4}(x - \frac{\pi}{3})^2$$

E)
$$(x - \frac{\pi}{3}) - \frac{1}{6}(x - \frac{\pi}{3})^2$$

Solution: We know that the Taylor polynomial of degree n of a function f at a point x=a is

$$T_n(x) = \sum_{j=0}^n \frac{f^{(j)}(a)}{j!} (x-a)^j.$$

Here we have $f(x) = \sin x$, n = 2 and $a = \frac{\pi}{3}$.

$$f(x) = \sin x$$
, $f'(x) = \cos x$, $f''(x) = -\sin x$.

Evaluating these at $x = \frac{\pi}{3}$ gives

$$f(\frac{\pi}{3}) = \sin\frac{\pi}{3} = \sqrt{3}2, \quad f'(\frac{\pi}{3}) = \cos\frac{\pi}{3} = \frac{1}{2}, \quad f''(\frac{\pi}{3}) = -\sin\frac{\pi}{3} = -\sqrt{3}2.$$

So

$$T_2(x) = \frac{\sqrt{3}}{2} + \frac{1}{2}(x - \frac{\pi}{3}) - \frac{\sqrt{3}}{4}(x - \frac{\pi}{3})^2.$$

The correct answer is A.

6) The slope of the tangent line to the graph of the curve $x=1+t^2,\ y=t\ln t$ at t=2 is

A)
$$\frac{1}{4}$$

B)
$$\frac{\ln 2}{4}$$

C)
$$\frac{4}{\ln 2}$$

D)
$$\frac{1+\ln 2}{4}$$

E)
$$\frac{4}{1+\ln 2}$$

Solution: We know that

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\ln t + 1}{2t}.$$

When t = 2 we have

$$\frac{dy}{dx} = \frac{1 + \ln 2}{4}.$$

The correct answer is D.

7) The length of the curve $x = e^t + e^{-t}$, y = 2t, $0 \le t \le 1$ is

A)
$$e + e^{-1} - 2$$

B)
$$e - e^{-1}$$

C)
$$e + e^{-1}$$

D)
$$e + e^{-1} - 2$$

E)
$$\frac{1}{2}(e+e^{-1})$$

Solution: First we find that

$$x'(t) = e^t - e^{-t}, \quad y'(t) = 2$$

So

$$(x'(t))^{2} + (y'(t))^{2} = (e^{t} + e^{-t})^{2} + 4 = e^{2t} - 2 + e^{2t} + 4 = e^{2t} + e^{-2t} + 2 = (e^{t} + e^{-t})^{2}.$$

So

$$L = \int_0^1 (e^t + e^{-t}) dt = e^t - e^{-t} \Big|_0^1 = e - e^{-1}.$$

The correct answer is C.

8) The curve $x = \cos^3 \theta$, $y = \sin^3 \theta$, $0 \le \theta \le \frac{\pi}{2}$ is rotated about the x-axis to generate a surface. Its area is given by

A)
$$\int_0^{\frac{\pi}{2}} 6\pi \cos \theta \sin \theta \ d\theta$$

B)
$$\int_0^{\frac{\pi}{2}} 6\pi \cos^2 \theta \sin^2 \theta \ d\theta$$

C)
$$\int_0^{\frac{\pi}{2}} 6\pi \cos^2 \theta \sin^3 \theta \ d\theta$$

D)
$$\int_0^{\frac{\pi}{2}} 6\pi \cos \theta \sin^4 \theta \ d\theta$$

E)
$$\int_0^{\frac{\pi}{2}} 6\pi \cos^2 \theta \sin^4 \theta \ d\theta$$

Solution: We find that

$$x'(\theta) = -3\cos^2\theta\sin\theta, \ y'(\theta) = 3\sin^2\theta\cos\theta.$$

So

$$(x'(\theta))^2 + (y'(\theta))^2 = 9\cos^4\theta\sin^2\theta + 9\sin^4\theta\cos^2\theta = 9\sin^2\theta\cos^2\theta(\sin^2\theta + \cos^2\theta) = 9\sin^2\theta\cos^2\theta.$$

Therefore

$$\sqrt{(x'(\theta))^2 + (y'(\theta))^2} = 3\cos\theta\sin\theta$$

So finally

$$A = 2\pi \int_0^{\frac{\pi}{2}} y(\theta) \sqrt{(x'(\theta))^2 + (y'(\theta))^2} d\theta = 6\pi \int_0^{\frac{\pi}{2}} \sin^4 \theta \cos \theta d\theta.$$

The correct answer is D.

- 9) The cartesian coordinates of a point are $(-2\sqrt{3},2)$. Find its polar coordinates
- A) $(4, \frac{2\pi}{3})$
- B) $(4, \frac{5\pi}{6})$
- C) $(2, \frac{2\pi}{3})$
- D) $(2, \frac{5\pi}{6})$
- E) $(4, -\frac{\pi}{3})$

Solution: We know that $x = r \cos \theta$ and $y = r \sin \theta$ where $r^2 = x^2 + y^2$. So $r^2 =$

 $(-2\sqrt{3})^2 + 4 = 16$. Then r = 4. On the other hand

$$\cos \theta = \frac{x}{r} = -\frac{2\sqrt{3}}{4} = -\frac{\sqrt{3}}{2}, \quad \sin \theta = \frac{y}{r} = \frac{1}{2}.$$

The angle must be on the second quadrant and so $\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$. The correct answer is B.

- 10) The polar equation of the circle of radius 1 centered at (0, -1) is
- A) $r = 2\cos\theta$
- B) $r = 2\sin\theta$
- C) $r = -\sin\theta$
- D) $r = -2\sin\theta$
- E) $r = -2\cos\theta$

Solution: The circle centered at (0,-1) with radius 1 has equation $x^2+(y+1)^2=1$. Then $x^2+y^2+2y+1=1$ and thus $x^2+y^2+2y=0$. Since $x^2+y^2=r^2$ and $y=r\sin\theta$, this equation reduces to $r^2+2r\sin\theta=0$ or $r=-2\sin\theta$.