1) (10 points) Which of the following series converge?

$$
S_{1}=\sum_{n=1}^{\infty} \frac{n^{3}+9 n^{2}}{300 n^{4}+3 n}, \quad S_{2}=\sum_{n=1}^{\infty} \frac{8 n^{2}+7 n}{n^{4}+9 n^{3}}, \quad S_{3}=\sum_{n=1}^{\infty} \frac{8 n^{6}+7 n}{600 n^{5}+200 n^{3}}
$$

A) Only S_{1}
B) S_{1}, S_{2} and S_{3}
C) S_{1} and S_{2}
D) S_{2} and S_{3}
E) Only S_{2}

Solution: It is easy to see that the third series diverges because

$$
\lim _{n \rightarrow \infty} \frac{8 n^{6}+7 n}{600 n^{5}+200 n^{3}}=\infty
$$

To analyze the convergence of the other two, we use the limit comparison theorem. Notice that

$$
\lim _{n \rightarrow \infty} \frac{\frac{n^{3}+9 n^{2}}{300 n^{4}+3 n}}{\frac{1}{n}}=\frac{1}{300} \text { and } \lim _{n \rightarrow \infty} \frac{\frac{8 n^{2}+7 n}{n^{4}++n^{3}}}{\frac{1}{n^{2}}}=8
$$

Since $\sum \frac{1}{n}$ diverges and $\sum \frac{1}{n^{2}}$ converges, we find that S_{1} diverges and S_{2} converges. So S_{2} is the only convergent series. Correct answer: E
2) (9 points) Which of the following is true about the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$?
I) It converges by the integral test
II) It converges by the comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$
III) It diverges by the comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$
A) I, II and III are true
B) Only I and II are true
C) Only II is true
D) Only I is true
E) Only III is true

Solution: Notice that, substituting $u=\ln x$,

$$
\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} d x=\int_{\ln 2}^{\infty} \frac{d u}{u^{2}}=\frac{1}{\ln 2}
$$

So the integral test says that $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ converges. Although it is true that $\frac{1}{n(\ln n)^{2}}<\frac{1}{n}$, the comparison test cannot be used to decide the convergence of this series. Correct answer: D
3) (9 points) Let $f(x)$ be a function defined for $x \geq 1$, such that $0 \leq f(x) \leq 1$, for all $x \geq 1$. What can be said about the series

$$
S_{1}=\sum_{n=1}^{\infty} \frac{f(n)}{n}, \quad S_{2}=\sum_{n=1}^{\infty} \frac{f(n)}{n^{2}} ?
$$

A) S_{1} and S_{2} converge
B) S_{1} diverges and S_{2} converges
C) S_{1} converges and S_{2} diverges
D) S_{1} and S_{2} diverge
E) S_{2} converges, but S_{1} might converge or diverge.

Solution: Since $f(n) \leq 1$, it follows that

$$
\frac{f(n)}{n^{2}} \leq \frac{1}{n^{2}}
$$

So S_{2} converges. However S_{1} may converge or not. For example if $f(n)=1, S_{1}$ diverges. On the other hand, if $f(n)=\frac{1}{n}, S_{1}$ converges. Correct answer: E
4) (9 points) Using that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, and the limit comparison theorem, the following is true about the series

$$
S_{1}=\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right), \quad S_{2}=\sum_{n=1}^{\infty} \sin \left(\frac{1}{n^{2}}\right):
$$

A) S_{1} and S_{2} converge
B) S_{1} diverges and S_{2} converges
C) S_{1} converges and S_{2} diverges
D) S_{1} and S_{2} diverge
E) S_{2} converges, but S_{1} might converge or diverge.

Solution: Using the limit above we find that

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}}=1, \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n^{2}}\right)}{\frac{1}{n^{2}}}=1
$$

Since $\sum \frac{1}{n}$ diverges and $\sum \frac{1}{n^{2}}$ converges, we deduce from the limit comparison theorem that S_{1} diverges and S_{2} converges. Correct answer: B
5)(9 points) Find the smallest number of terms which one needs to add to find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3} n!}$ with an error strictly less than 10^{-3}.
A) 2 terms
B) 3 terms
C) 4 terms
D) 5 terms
E) 11 terms

Solution: This is an alternating series. We know that if $S=\sum_{n=1}^{\infty}(-1)^{n} b_{n}$, and $S_{N}=$ $\sum_{n=1}^{N}(-1)^{n} b_{n}$, where $b_{n} \geq 0, b_{n+1} \leq b_{n}$, and $\lim _{n \rightarrow \infty} b_{n}=0$, then

$$
\left|S-S_{N}\right| \leq b_{N+1}
$$

In our case $b_{n}=\frac{1}{n^{3} n!}$ so it satisfies the three assumptions about b_{n} stated above. Since we want the error to be strictly less than 10^{-3}, we impose that $b_{N+1}<10^{-3}$. In this case,

$$
\frac{1}{(N+1)^{3}(N+1)!}<10^{-3} .
$$

So we must have

$$
(N+1)^{3}(N+1)!>1000
$$

The first value of N for which this is true is $N=3$. So we need at least 3 terms. Correct answer B.

4
6)(9 points) Each of the following series converge

$$
S_{1}=\sum_{n=1}^{\infty}(-1)^{n} \frac{2}{3 n+1}, \quad S_{2}=\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{2^{n}}, \quad S_{3}=\sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n}{n \sqrt{n}} .
$$

Which ones converge absolutely?
A) S_{1}, S_{2} and S_{3}
B) S_{1} and S_{2}
C) S_{1} and S_{3}
D) S_{2} and S_{3}
E) Only S_{2}

Solution: The first series does not converge absolutely by comparison with $\sum \frac{1}{n}$ because

$$
\left|(-1)^{n} \frac{2}{3 n+1}\right|=\frac{2}{3 n+1}>\frac{2}{4 n}>\frac{1}{2 n} .
$$

The third series converges absolutely by comparison with $\sum \frac{1}{n^{\frac{3}{2}}}$ because

$$
\left|(-1)^{n} \frac{\sin n}{n \sqrt{n}}\right|=\frac{\sin n}{n \sqrt{n}} \leq \frac{1}{n \sqrt{n}}=\frac{1}{n^{\frac{3}{2}}} .
$$

The second series converges absolutely by the ratio test,

$$
\lim _{n \rightarrow \infty} \frac{n+1}{2^{n+1}} \frac{2^{n}}{n}=\lim _{n \rightarrow \infty} \frac{n+1}{2 n}=\frac{1}{2}<1 .
$$

Correct answer: D
7)(9 points) Which of the following is the interval of convergence of the power series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}(x-2)^{n}}{3^{n}\left(n^{3}+2\right)} ?
$$

A) $(0,6)$
B) $[0,6)$
C) $(-1,5]$
D) $[-1,5)$
E) $(0,6]$

Solution: First we use the ratio test to find the radius of convergence

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}(x-2)^{n+1}}{3^{n+1}\left((n+1)^{3}+2\right)} \frac{3^{n}\left(n^{3}+2\right)}{n^{2}(x-2)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}\left(n^{3}+2\right)}{n^{2}\left((n+1)^{3}+2\right)} \frac{|x-2|}{3}=\frac{|x-2|}{3} .
$$

So the series converges when $\frac{|x-2|}{3}<1$, which is the same as $-1<x<5$. Next we test the convergence of the series at the end points $x=-1$ and $x=5$. When $x=-1$, the series is

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}(-3)^{n}}{3^{n}\left(n^{3}+2\right)}=\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+2}
$$

which diverges by limit comparison with $\sum \frac{1}{n}$. When $x=5$, the series is

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}(3)^{n}}{3^{n}\left(n^{3}+2\right)}=\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{n^{3}+2} .
$$

This is an alternating series. If $b_{n}=\frac{n^{2}}{n^{3}+2}$, we see that b_{n} satisfies: $b_{n} \geq 0, b_{n+1} \leq b_{n}$ and $\lim _{n \rightarrow \infty} b_{n}=0$. So it converges conditionally by the alternating series test. Correct answer: C.
8) (9 points) Let $f(x)$ be the function which is represented by the power series

$$
f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-1)^{n}}{n^{3}} .
$$

The fifth derivative of the function f at $x=1$ is equal to
A) $\frac{1}{2}$
B) $-\frac{37}{81}$
C) $-\frac{24}{25}$
D) $\frac{25}{96}$
E) $\frac{1}{4}$

Solution: We know that if a function $f(x)$ is represented by a power series

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}, \quad \text { if } \quad|x-a|<R,
$$

then $c_{n}=\frac{f^{(n)}(a)}{n!}$. So in this case

$$
\frac{f^{(5)}(1)}{5!}=(-1)^{5} \frac{1}{5^{3}} .
$$

Therefore $f^{(5)}(1)=\frac{-5!}{5^{3}}=\frac{-24}{25}$. Correct asnwer: C
9) (9 points) The coefficient of the x^{4} term of the binomial series of $f(x)=\sqrt{1+x}$ is
A) $\frac{1}{57}$
B) $-\frac{75}{128}$
C) $-\frac{5}{128}$
D) $\frac{8}{57}$
E) $\frac{9}{77}$

Solution: The binomial series is

$$
(1+x)^{k}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\frac{k(k-1)(k-2)(k-3)}{4!} x^{4}+\ldots
$$

In this case $k=\frac{1}{2}$. So the coefficient of x^{4} is

$$
c_{4}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)\left(\frac{1}{2}-3\right)}{4!}=\frac{-5}{128} .
$$

Correct answer: C
$10)\left(9\right.$ points) The Taylor series of $f(x)=\frac{1}{5-x}$ centered $a=1$ is
A) $\sum_{n=0}^{\infty}(x-1)^{n}$
B) $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{n!}$
C) $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{5^{n}}$
D) $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{4^{n+1}}$
E) $\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-1)^{n}}{4^{n+1}}$

Solution: First write

$$
\frac{1}{5-x}=\frac{1}{4-(x-1)}=\frac{1}{4} \frac{1}{1-\frac{(x-1)}{4}} .
$$

By the formula for the geometric series,

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad|x|<1
$$

we get that

$$
\frac{1}{1-\frac{(x-1)}{4}}=\sum_{n=0}^{\infty}\left(\frac{x-1}{4}\right)^{n}=\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{4^{n}}
$$

So

$$
\frac{1}{5-x}=\frac{1}{4-(x-1)}=\frac{1}{4} \frac{1}{1-\frac{(x-1)}{4}}=\frac{1}{4} \sum_{n=0}^{\infty} \frac{(x-1)^{n}}{4^{n}}=\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{4^{n+1}} .
$$

Correct answer: D.

11)(9 points) Recall that

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad-\infty<x<\infty .
$$

Using this, we find that Maclaurin series of

$$
\int x^{2} \sin x d x \text { is }
$$

A) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$
B) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+3}}{(2 n+1)!}$
C) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+3}}{(2 n+3)(2 n+1)!}$
D) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+4}}{(2 n+4)(2 n+1)!}$
E) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+4}}{(2 n+4)!(2 n+1)!}$

Solution: From the given formula we have:

$$
x^{2} \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+3}}{(2 n+1)!}, \quad-\infty<x<\infty .
$$

To find $\int x^{2} \sin x d x$ we only need to integrate the series term by term. We obtain

$$
\int x^{2} \sin x d x=\sum_{n=0}^{\infty}(-1)^{n} \int \frac{x^{2 n+3}}{(2 n+1)!} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+4}}{(2 n+4)(2 n+1)!} .
$$

Correct answer: D.

