MATH 162 - SPRING 2004 - SECOND EXAM SOLUTIONS

The following formulas were given on the exam:
Moments and center of mass

$$
\begin{gathered}
M_{x}=\int_{a}^{b} \frac{1}{2}\left((f(x))^{2}-(g(x))^{2}\right) d x, \quad M_{y}=\int_{a}^{b} x(f(x)-g(x)) d x \\
\bar{x}=\frac{M_{y}}{M}, \quad \bar{y}=\frac{M_{x}}{M}
\end{gathered}
$$

Arc length

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Area of a surface of revolution

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

1) The mass of the region bounded by $f(x)=\frac{1}{2} \sqrt{4-2 x^{2}}, g(x)=-\frac{1}{2} \sqrt{4-2 x^{2}}$ and the y-axis is $\pi \sqrt{2}$. Its center of mass is
A) $\left(\frac{8}{3 \pi \sqrt{2}}, 0\right)$
B) $\left(0, \frac{8}{3 \pi \sqrt{2}}\right)$
C) $\left(\frac{1}{2}, \frac{8}{3 \pi \sqrt{2}}\right)$
D) $\left(0, \frac{4}{3 \pi \sqrt{2}}\right)$
E) $\left(\frac{4}{3 \pi \sqrt{2}}, 0\right)$

Solution: According to the formulas above, the center of mass is

$$
\begin{gathered}
\bar{x}=\frac{1}{\pi \sqrt{2}} \int_{0}^{\sqrt{2}} x \sqrt{4-2 x^{2}} d x \\
\bar{y}=0 \quad \text { this is because } f(x)^{2}=g(x)^{2} .
\end{gathered}
$$

To compute this integral we just set $u=4-2 x^{2}$. Then $d u=-4 x d x$ and the integral becomes

$$
\bar{x}=\frac{1}{\pi \sqrt{2}} \int_{0}^{4} \sqrt{u} \frac{d u}{4}=\left.\frac{1}{4 \pi \sqrt{2}} \frac{2}{3} u^{\frac{3}{2}}\right|_{0} ^{4}=\frac{1}{4 \pi \sqrt{2}} \frac{2}{3} 8=\frac{4}{3 \pi \sqrt{2}} .
$$

The correct answer is E .
2) The improper integral

$$
\int_{0}^{1} \ln x d x=
$$

A) $2 \ln 2$
B) $-4 \ln 2$
C) $2 \ln 2$
D) -1
E) $-\frac{1}{9}$

Solution: By definition of improper integrals

$$
\int_{0}^{1} \ln x d x=\lim _{a \rightarrow 0} \int_{a}^{1} \ln x d x
$$

Integration by parts gives

$$
\int_{a}^{1} \ln x d x=\left.(x \ln x-x)\right|_{a} ^{1}=-1-(a \ln a-a)
$$

Now we have to compute

$$
\lim _{a \rightarrow 0} a \ln a-a=\lim _{a \rightarrow 0} a \ln a
$$

To do this we use L'Hosptial's rule and write

$$
\lim _{a \rightarrow 0} a \ln a=\lim _{a \rightarrow 0} \frac{\ln a}{\frac{1}{a}}=\lim _{a \rightarrow 0} \frac{\frac{1}{a}}{-\frac{1}{a^{2}}}=\lim _{a \rightarrow 0}-a=0
$$

So

$$
\int_{0}^{1} \ln x d x=-1
$$

The correct answer is D. Unfortunately this question had two identical alternatives, but but both are incorrect.
3) The improper integral

$$
\int_{0}^{\infty} x e^{-x^{2}} d x \quad \text { is equal to }
$$

A) $\frac{1}{3}$
B) $\frac{1}{4}$
C) $\frac{1}{2}$
D) 1
E) 2

Solution: By definition

$$
\int_{0}^{\infty} x e^{-x^{2}} d x=\lim _{M \rightarrow \infty} \int_{0}^{M} x e^{-x^{2}} d x
$$

To compute the integral we set $y=x^{2}$ and so $d y=2 x d x$. Therefore

$$
\int_{0}^{M} x e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{M^{2}} e^{-y} d y=\frac{1}{2}\left(1-e^{-M^{2}}\right)
$$

So

$$
\int_{0}^{\infty} x e^{-x^{2}} d x=\lim _{M \rightarrow \infty} \int_{0}^{M} x e^{-x^{2}} d x=\lim _{M \rightarrow \infty} \frac{1}{2}\left(1-e^{-M^{2}}\right)=\frac{1}{2}
$$

The correct answer is C.
4) The length of the curve $y=\frac{x^{3}}{6}+\frac{1}{2 x}, 1 \leq x \leq 2$ is
A) $\frac{17}{12}$
B) $\frac{4}{3}$
C) $\frac{3}{2}$
D) 2
E) 1

Solution: The derivative of $f(x)=\frac{x^{3}}{6}+\frac{1}{2 x}$ is $f^{\prime}(x)=\frac{x^{2}}{2}-\frac{1}{2 x^{2}}$. So according to the
formula given on the first page, the length of the curve is

$$
L=\int_{1}^{2} \sqrt{1+\left(\frac{x^{2}}{2}-\frac{1}{2 x^{2}}\right)^{2}} d x
$$

Notice that

$$
1+\left(\frac{x^{2}}{2}-\frac{1}{2 x^{2}}\right)^{2}=1+\frac{x^{4}}{4}-\frac{1}{2}+\frac{1}{4 x^{4}}=\frac{x^{4}}{4}+\frac{1}{2}+\frac{1}{4 x^{4}}=\left(\frac{x^{2}}{2}+\frac{1}{2 x^{2}}\right)^{2}
$$

Therefore

$$
L=\int_{1}^{2}\left(\frac{x^{2}}{2}+\frac{1}{2 x^{2}}\right) d x=\left.\left(\frac{x^{3}}{6}-\frac{1}{2 x}\right)\right|_{1} ^{2}=\left(\frac{8}{6}-\frac{1}{4}\right)-\left(\frac{1}{6}-\frac{1}{2}\right)=\frac{17}{12}
$$

The correct answer is A.
5) The area of the surface obtained by rotating the curve

$$
y=x^{3}, \quad 0 \leq x \leq 1
$$

about the x-axis is
A) $\pi \sqrt{3}$
B) $\frac{2 \pi}{3}$
C) $\frac{\pi}{27}(10 \sqrt{10}-1)$
D) $6 \pi(3 \sqrt{3}-1)$
E) $\frac{\pi}{3}(10 \sqrt{10}-1)$

Solution: The derivative of $f(x)=x^{3}$ is $f^{\prime}(x)=3 x^{2}$ so according to the formula on the first page:

$$
A=2 \pi \int_{0}^{1} x^{3} \sqrt{1+9 x^{4}} d x
$$

Set $u=1+9 x^{4}$. Then $d u=36 x^{3}$ and the integral becomes:
$A=2 \pi \int_{0}^{1} x^{3} \sqrt{1+9 x^{4}} d x=\frac{2 \pi}{36} \int_{1}^{10} \sqrt{u} d u=\left.\frac{2 \pi}{36} \frac{2}{3} u^{\frac{3}{2}}\right|_{1} ^{10}=\frac{2 \pi}{36} \frac{2}{3}(10 \sqrt{10}-1)=\frac{\pi}{27}(10 \sqrt{10}-1)$.
The correct answer is C.
6) Find

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{2 n^{4}+n^{2}+1}}{2 n^{2}+1}
$$

A) $\frac{1}{2}$
B) 1
C) $\frac{\sqrt{2}}{2}$
D) 0
E) It does not exist.

Solution: We just write

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{2 n^{4}+n^{2}+1}}{2 n^{2}+1}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{4}\left(2+\frac{1}{n^{2}}+\frac{1}{n^{4}}\right)}}{n^{2}\left(2+\frac{1}{n^{2}}\right)}=\lim _{n \rightarrow \infty} \frac{\sqrt{\left(2+\frac{1}{n^{2}}+\frac{1}{n^{4}}\right)}}{2+\frac{1}{n^{2}}}=\frac{\sqrt{2}}{2} .
$$

The correct answer is C.
7) The series

$$
\sum_{n=1}^{\infty} \frac{\sqrt{2 n^{4}+n^{2}+1}}{2 n^{2}+1}
$$

A) diverges
B) converges conditionally
C) converges by the ratio test
D) converges by the root test
E) converges by the integral test

Solution: We just computed in question 6 that $\lim _{n \rightarrow \infty} \frac{\sqrt{2 n^{4}+n^{2}+1}}{2 n^{2}+1}=\frac{\sqrt{2}}{2}$. Since this limit is not equal to zero, the series diverges. The correct answer is A.
8) Find

$$
\lim _{n \rightarrow \infty} n \sin \left(\frac{1}{n}\right)
$$

A) 0
B) 1
C) 2
D) ∞
E) it does not exist

Solution: We know that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

We just the write

$$
\lim _{n \rightarrow \infty} n \sin \left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}}
$$

Set $\frac{1}{n}=x$. So when $n \rightarrow \infty, x \rightarrow 0$. Therefore

$$
\lim _{n \rightarrow \infty} n \sin \left(\frac{1}{n}\right)=\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

The correct answer is B.
9) The series $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)$
A) converges by the ratio test
B) diverges by the ratio test
C) converges because $\lim _{n \rightarrow \infty} \sin \left(\frac{1}{n}\right)=0$
D) converges by the limit comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$
E) diverges by the limit comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$

Solution: The limit comparison theorem states that if $\sum a_{n}$ and $\sum b_{n}$ are series of positive terms and and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$, with $L \neq 0$ and $L \neq \infty$, then the series $\sum a_{n}$ and $\sum b_{n}$
either converge or diverge simultaneously. That is one cannot converge and the other diverge.

In problem 8 we found that

$$
\lim _{n \rightarrow \infty} n \sin \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}}=1
$$

Since the series $\sum \frac{1}{n}$ diverges, $\sum \sin \left(\frac{1}{n}\right)$ must diverge as well. The correct answer is E .
We remark that this is problem number 31 of lesson 20, which was assigned in the homework.
10)

$$
\sum_{n=0}^{\infty} \frac{2^{n+1}-3^{n}}{6^{n}}=
$$

A) 1
B) 5
C) $\frac{7}{3}$
D) $\frac{1}{2}$
E) diverges

Solution: Recall that if $|r|<1$ then

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}
$$

So we write

$$
\sum_{n=0}^{\infty} \frac{2^{n+1}-3^{n}}{6^{n}}=\sum_{n=0}^{\infty} 2 \frac{2^{n}}{6^{n}}-\frac{3^{n}}{6^{n}}=2 \sum_{n=0}^{\infty} \frac{1}{3^{n}}-\sum_{n=0}^{\infty} \frac{1}{2^{n}}=2 \frac{1}{1-\frac{1}{3}}-\frac{1}{1-\frac{1}{2}}=3-2=1 .
$$

The correct answer is A.
11) What is the smallest number of terms of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$ that need to be added to compute its sum with error strictly less than 10^{-2} ?
A) 3
B) 4
C) 5
D) 6
E) 7

Solution: Recall that for a converging alternating series $\sum_{n=0}^{\infty}(-1)^{n} b_{n}$ the difference between the sum of the series and the sum of the first N terms satisfies:

$$
\left|\sum_{n=0}^{\infty}(-1)^{n} b_{n}-\sum_{n=0}^{N}(-1)^{n} b_{n}\right| \leq b_{N+1} .
$$

In our case $b_{n}=\frac{1}{n!}$ and therefore we want N such that $b_{N+1}<10^{-2}$. That is

$$
\frac{1}{(N+1)!}<\frac{1}{100}
$$

Hence we want the first N such that

$$
(N+1)!>100
$$

That is $N=4$. So the correct answer is B .
12) Which of the following is a correct statement about the series

$$
S_{1}=\sum_{n=2}^{\infty} \frac{1}{n \ln n} \quad \text { and } \quad S_{2}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \ln n} ?
$$

A) S_{1} and S_{2} are divergent
B) S_{1} converges but S_{2} diverges
C) S_{1} diverges but S_{2} converges conditionally
D) S_{1} converges and S_{2} converges conditionally
E) S_{1} and S_{2} converge absolutely

Solution: By the integral test $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ converges if and only if the integral $\int_{2}^{\infty} \frac{1}{x \ln x} d x$ converges. To compute this integral we set $\ln x=u$. Then $d u=\frac{1}{x} d x$ and hence

$$
\int_{2}^{\infty} \frac{1}{x \ln x} d x=\lim _{M \rightarrow \infty} \int_{\ln 2}^{\ln M} \frac{1}{u} d u=\lim _{M \rightarrow \infty}(\ln (\ln M)-\ln (\ln 2))=\infty
$$

As the integral diverges, so does the series $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.
On the other hand $b_{n}=\frac{1}{n \ln n}$ satisfies
i) $b_{n} \geq 0$
ii) $b_{n+1} \leq b_{n}$
iii) $\lim _{n \rightarrow \infty} b_{n}=0$.

Thus by the alternating series test $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n \ln n}$ converges conditionally. The correct answer is C.
13) Find the interval of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n 3^{n}}
$$

A) $(-3,3)$
B) $\left(-\frac{1}{3}, \frac{1}{3}\right)$
C) $(-3,3]$
D) $\left(-\frac{1}{3}, \frac{1}{3}\right]$
E) $[-3,3)$

Solution: First we use the ratio test to find the radius of convergence: It says that if

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

and $L<1$, then $\sum\left|a_{n}\right|$ converges. In this case $a_{n}=\frac{x^{n}}{n 3^{n}}$. So

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1) 3^{n+1}} \frac{n 3^{n}}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{3}\right| \frac{n}{n+1}=\left|\frac{x}{3}\right| .
$$

So the series converges if $\left|\frac{x}{3}\right|<1$. That is it converges in $(-3,3)$. Now we need to test the end points of this interval. When $x=3$ we have

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

and this diverges. When $x=-3$

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n 3^{n}}=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}
$$

which converges. So the series converges for x in $[-3,3)$. The correct answer is E .

