XM 3. SPRING 2016

1. An observer is stationed 300 feet from a rocket launch pad. The rocket rises vertically off
the launch pad. A few seconds after takeoff, the rocket is 300 feet in the air and rising
at 100 feet/sec. How fast is the angle of elevation, 6, changing at that instant?
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2. Use a linear approximation (or differentials) to estimate the value of 1/24.8
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3. Find the minimum value of f(z) = 2® — z on the closed interval [—1,1].

Hint: Find the actual value of f and NOT the z-value at which that minimum occurs.
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4. The function f is continuous on [0,2] and differentiable on (0,2), and consequently the
direct application of the mean value theorem guarantees the existence of ¢, where c is
between 0 and 2 and pictured below. Find f'(c).
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5. Which statement accurately describes the function
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A. f is increasing and its graph is concave up. I

B. f is decreasing and its graph is concave up. v

on the interval (0, 3)?
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C. f is increasing and its graph is concave down. o)
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D. | f is decreasing and its graph is concave down.
E. None of the above.
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6. The graph of y = f'(z), the derivative of f, is shown below. o 3
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Which of the following statements about f are true?

I. The graph of f is concave up on the interval (2,4).
II. f(x) has a local minimum at z = 2.
III. (1, f(1)) is an inflection point for f.

A. None of these statements are true.
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7. Find the limit.
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8. Find the z-coordinate of the inflection point of the function f(z) = % on the interval
0<z<l v
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A six-sided box is to have four clear plastic sides, a wooden square top, and a wooden
square bottom. The volume of the box must be 24 ft3. Plastic costs $1 per ft> and wood
costs $3 per ft2. Find the dimensions of the box which minimize cost.
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A rectangle is formed with one corner at (0,0) and the opposite corner on the graph of
y = —Inx, where 0 < z < 1. What is the largest possible area of such a rectangle?
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E. There is no maximum.



11. Suppose f is a differentiable function with f”(x) > 0 for all real numbers z. Assume that
f(1) =3 and f(5) = 3. Which one of these statements must be true?

A. f'(z) is decreasing at = = 3.
B. f(x) > 0 for all real numbers z. RoLtes:

C. f has an inflection point. ¥ I[c) =0 —E)r‘ Some ,4 C 15
D. f'(3) > 0.
E

. | f has a local minimum.
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12. Which of these curves is the graph of y = 5z° + 62° ?
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