EXAM 3, SPRING 2016

1. An observer is stationed 300 feet from a rocket launch pad. The rocket rises vertically off the launch pad. A few seconds after takeoff, the rocket is 300 feet in the air and rising at 100 feet/sec. How fast is the angle of elevation, θ , changing at that instant?

- A. $\frac{1}{6}$ radian/sec
- B. 2 radian/sec
- C. $\frac{1}{2}$ radian/sec
- D. $\frac{1}{4}$ radian/sec
- E. $\frac{2}{3}$ radian/sec

$$\Theta = \tan^{-1}\left(\frac{h}{300}\right)$$

$$\frac{d\theta}{dt} = \frac{1}{1 + \left(\frac{h}{300}\right)^2} \left(\frac{1}{300}\right) \frac{dh}{dt}$$

AT INSTANT:

$$\frac{1}{1+\left(\frac{300}{300}\right)^2}\left(\frac{1}{300}\right)\left(100\right)$$

- 2. Use a linear approximation (or differentials) to estimate the value of $\sqrt{24.8}$
 - A. 5.20
 - B. 4.98
 - C. 4.95
 - D. 4.92
 - E. 4.90

$$\sqrt{25} + \frac{1}{2\sqrt{25}}(24.8-25)$$

3. Find the minimum value of $f(x) = x^3 - x$ on the closed interval [-1, 1].

Hint: Find the actual value of f and NOT the x-value at which that minimum occurs.

- A. 0
- B. $-\frac{1}{\sqrt{3}}$
- C. $-\frac{1}{3}$
- D. $-\frac{2}{3\sqrt{3}}$
- E. There is no absolute minimum value.
- f(x)=3x2-1 CRIT NUMBERS: X= +5
- t(児)=-瑩 ← t(児)=-瑩 ← t(川)=0
- f(1) = 0

4. The function f is continuous on [0,2] and differentiable on (0,2), and consequently the direct application of the mean value theorem guarantees the existence of c, where c is between 0 and 2 and pictured below. Find f'(c).

 $\frac{f(2)-f(0)}{z-0} = \frac{1-5}{2} = -2$

- A. $\boxed{-2}$
- B. 1.2
- C. 0.5
- D. -4
- E. -1

5. Which statement accurately describes the function

$$f(x) = x^4 - 6x^3$$

on the interval (0,3)?

- A. f is increasing and its graph is concave up.
- B. f is decreasing and its graph is concave up.
- C. f is increasing and its graph is concave down.
- D. f is decreasing and its graph is concave down.
- E. None of the above.

$$f(x) = 4x^3 - 18x^2$$

= $2x^2(2x - 9)$
 $f(0) = 4.5$

$$f''(x)=12x^2-36x$$

6. The graph of y = f'(x), the **derivative** of f, is shown below.

Which of the following statements about f are true?

- I. The graph of f is concave up on the interval (2,4).
- II. f(x) has a local minimum at x = 2.
- III. (1, f(1)) is an inflection point for f.
- A. None of these statements are true.
- B. I and III
- C. II and III
- D. I and II
- E. I, II, and III

7. Find the limit.

$$\lim_{x\to 0} \frac{\tan x - x}{x^3} = \frac{0}{0}$$

$$= \lim_{x\to 0} \frac{\sec^2 x - 1}{3x^2} = \frac{0}{0}$$
C. 1
$$= \lim_{x\to 0} \frac{2\sec x (\sec x \tan x)}{6x} = \lim_{x\to 0} \frac{\tan x}{3x \cos^2 x} = \frac{1}{3+0} = \frac{1}{3}$$

$$= \lim_{x\to 0} \frac{\sec^2 x}{3\cos^2 x + (-6x\cos x \sin x)} = \frac{1}{3+0} = \frac{1}{3}$$

8. Find the x-coordinate of the inflection point of the function $f(x) = \frac{1}{\ln x}$ on the interval 0 < x < 1.

A.
$$x = \frac{1}{2}$$

B. $x = \frac{1}{e^2}$

C. $x = \frac{1}{\sqrt{e}}$

D. $x = \frac{1}{e}$

E. $x = \ln 2$

$$\begin{cases} (x) = -(\ln x)^2 (\frac{1}{x}) = \frac{-(\ln x)^2 (\frac{1}{x})^2 (\ln x)^2 (\ln x)^2}{(\ln x)^4 (\ln x)^2} = \frac{2(\ln x)(\frac{1}{x}) (\ln x)^4 (\ln x)^2}{(\ln x)^4 (\ln x)^2} = 0 \\ \ln x (2 + \ln x) = 0 \\ \ln x = -2 \\ x = e^{-2} \end{cases}$$

9. A six-sided box is to have four clear plastic sides, a wooden square top, and a wooden square bottom. The volume of the box must be 24 ft³. Plastic costs \$1 per ft² and wood costs \$3 per ft². Find the dimensions of the box which minimize cost.

VOLUME =
$$\chi^2 y = 24 \rightarrow y = \frac{24}{\chi^2}$$

A.
$$2 \text{ ft} \times 2 \text{ ft} \times 6 \text{ ft}$$

B.
$$\sqrt{6}$$
 ft $\times \sqrt{6}$ ft \times 4 ft

C.
$$\sqrt[3]{4}$$
 ft $\times \sqrt[3]{4}$ ft $\times 6\sqrt[3]{4}$ ft

D.
$$\sqrt[3]{3}$$
 ft $\times \sqrt[3]{3}$ ft $\times 8\sqrt[3]{3}$ ft

E.
$$2\sqrt[3]{2}$$
 ft $\times 2\sqrt[3]{2}$ ft $\times 3\sqrt[3]{2}$ ft

MIN
$$\cos z = 1(4xy) + 3(2x^2) = 4x(\frac{24}{x^2}) + 6x^2$$

$$C(x) = \frac{96}{x} + 6x^2$$

$$C'(x) = -\frac{96}{x^2} + 12x = -\frac{96 + 12x^3}{x^2}$$
$$-96 + 12x^3 = 0 \implies x^3 = 8 \implies x = 2$$

10. A rectangle is formed with one corner at (0,0) and the opposite corner on the graph of $y = -\ln x$, where 0 < x < 1. What is the largest possible area of such a rectangle?

A.
$$\frac{\sqrt{\epsilon}}{2}$$

B.
$$e$$

C.
$$\left[\frac{1}{e}\right]$$

D.
$$\frac{\ln 2}{2}$$

E. There is no maximum.

$$xy = (e^{-1})(1)$$

- 11. Suppose f is a differentiable function with f''(x) > 0 for all real numbers x. Assume that f(1) = 3 and f(5) = 3. Which one of these statements must be true?
 - A. f'(x) is decreasing at x=3.
 - B. $f(x) \ge 0$ for all real numbers x.
 - C. f has an inflection point.
 - D. f'(3) > 0.
 - E. f has a local minimum.

ROLLES:

SECOND DECLUATIVE TEST:

$$f''(c) > 0 \Rightarrow LOCAL MIN$$
 at C

C.

12. Which of these curves is the graph of $y = 5x^6 + 6x^5$?

$$y' = 30x^{4}(x+1)$$

$$y = 30 \times (x+1)$$

y is DECR:
$$(-\infty, -1)$$

$$y'' = 30x^3(5x+4)$$

$$y' = 30 \times 4(x+1)$$
 y is DECR: $(-\infty, -1)$ INCR: $(-1, 0) \cup (0, \infty)$
 $y'' = 30 \times 3(5x+4)$ y is Concave pown: Up: $(-\frac{4}{5}, 0)$ $(-\infty, -\frac{4}{5}) \cup (0, \infty)$