Answer to GREEN Exam 2

- 1. D
- 2. C
- 3. A
- 4. E
- 5. B
- 6. E
- 7. A
- 8. (1) $T(t^2 1) = -1 + 3t^2$

(2)
$$[T]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}$$

9. (1)
$$\lambda_1 = 4$$
, a basis is $\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \right\}$ $\lambda_2 = \lambda_3 = 1$, a basis is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$.

Answer may vary!

(2)
$$P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 2 \end{bmatrix}, D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Answer may vary!

10. (1)
$$\lambda_1 = 1$$
, $\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\lambda_2 = -2$, $\boldsymbol{v}_2 = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$.

Answer may vary!

(2)
$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = c_1 \begin{bmatrix} e^t \\ -e^t \end{bmatrix} + c_2 \begin{bmatrix} 5e^{-2t} \\ -2e^{-2t} \end{bmatrix}$$
 for arbitrary constants c_1 and c_2 .

Answer may vary!

(3)
$$c_1 = 2, c_2 = -1, x(1) + y(1) = -3e^{-2}$$
.