	Instructor: Tong Ding, Purdue Math,
Student:	Jennifer Hobbs, Stephanie Foster
Date:	Course: MA166-123- Analytic Geom. And Assignment: Exam3
	Calc. II-Spring 2020

1. Determine whether the following series converges absolutely, converges conditionally, or diverges.

$$\sum_{k=1}^{\infty} (-1)^k a_k = \sum_{k=1}^{\infty} \frac{(-1)^k k^5}{\sqrt{k^{12} + 16}}$$

Find $\lim_{k\to\infty} a_k$. Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

- $\bigcirc A. \quad \lim_{k \to \infty} a_k = \underline{\hspace{1cm}}$
- O B. The limit does not exist.

Now, let $\sum a_k$ denote $\sum_{k=1}^{\infty} \frac{(-1)^k k^5}{\sqrt{k^{12} + 16}}$. What can be concluded from this result using the Divergence Test?

- \bigcirc **A.** The series $\sum a_k$ must diverge.
- \bigcirc **B.** The series $\sum |a_k|$ must converge.
- \bigcirc **C**. The series $\sum |a_k|$ must diverge.
- \bigcirc **D.** The series $\sum a_k$ must converge.
- O E. The Divergence Test is inconclusive.

Are the terms of the sequence $\left|a_{k}\right|$ decreasing after some point?

- O yes
- O no

Let $\sum a_k$ denote $\sum_{k=1}^{\infty} \frac{(-1)^k k^5}{\sqrt{k^{12} + 16}}$. What can be concluded from these results using the Alternating Series Test?

- O A. The series k⁶ must diverge.
- \bigcirc **B.** The series $\sum a_k$ must diverge.
- O C. The series k⁶ must converge.
- \bigcirc **D.** The series $\sum a_k$ must converge.
- O E. The Alternating Series Test does not apply to this series.

Does the series $\sum |a_k|$ converge?

- O A. yes, as can be determined by the Limit Comparison Test
- O B. no, as can be determined by the Limit Comparison Test
- Oc. no, because of the Divergence Test

Does the series $\sum a_k$ converge absolutely, converge conditionally, or diverge?

- \bigcirc A. The series converges conditionally because $\sum |a_k|$ converges but $\sum a_k$ diverges.
- \bigcirc B. The series diverges because $\sum |a_k|$ diverges.
- \bigcirc **C**. The series converges conditionally because $\sum a_k$ converges but $\sum |a_k|$ diverges.
- \bigcirc **D.** The series converges absolutely because $\sum |\mathsf{a_k}|$ converges.
- E. The series diverges because $\lim_{k\to\infty} a_k \neq 0$.

E. The Divergence Test is inconclusive.

yes

- D. The series $\sum a_k$ must converge.
- B. no, as can be determined by the Limit Comparison Test
- C. The series converges conditionally because $\sum a_k$ converges but $\sum \left|a_k\right|$ diverges.
- 2. Find the power series representation for g centered at 0 by differentiating or integrating the power series for f (perhaps more than once). Give the interval of convergence for the resulting series.

$$g(x) = In (1 - 9x) using f(x) = \frac{1}{1 - 9x}$$

Which of the following is the power series representation for g centered at 0?

$$\bigcirc$$
 A. $-\frac{1}{9}\sum_{k=1}^{\infty}\frac{(9x)^k}{k}$

$$\circ$$
 c. $-9 \sum_{k=1}^{\infty} \frac{(9x)^k}{k}$

The interval of convergence is

(Simplify your answer. Type your answer in interval notation.)

Answers D.
$$-\sum_{k=1}^{\infty} \frac{(9x)^k}{k}$$

$$\left[-\frac{1}{9}, \frac{1}{9} \right]$$

3. Find the interval of convergence of the series.

$$\sum_{n=0}^{\infty} \frac{(x-4)^n}{n^2 6^n}$$

- O A. 3≤x≤5
- B. -10 < x < 10</p>
- \bigcirc **C.** x < 10
- \bigcirc **D**. -2≤x≤10

Answer: D. $-2 \le x \le 10$

For the following telescoping series, find a formula for the nth term of the sequence of partial sums {S_n}. Then evaluate lim S_n to obtain the value of the series or state that the series diverges.
 _{n→∞}

$$\sum_{k=1}^{\infty} \frac{16}{(4k-1)(4k+3)}$$

Select the correct choice and fill in any answer boxes in your choice below.

- O B. The series diverges.

Answers
$$\frac{4}{3} - \frac{4}{4n+3}$$

A.
$$\sum_{k=1}^{\infty} \frac{16}{(4k-1)(4k+3)} = \frac{4}{3}$$
 (Simplify your answer.)

5. Find the Taylor polynomials $p_1, ..., p_4$ centered at a = 0 for $f(x) = \cos(-2x)$.

 $p_1(x) = _____$

$$p_3(x) =$$

$$p_4(x) =$$

Answers 1

$$1 - 2x^2$$

$$1-2x^2$$

$$1-2x^2+\frac{2}{3}x^4$$

6. Use the Ratio Test to determine if the series converges.

$$\sum_{k=1}^{\infty} \frac{6(k!)^2}{7(2k)!}$$

Select the correct choice below and fill in the answer box to complete your choice.

- A. The series diverges because r = _____.
- O B. The series converges because r =
- Oc. The Ratio Test is inconclusive because r = _____

Answer: B. The series converges because $r = \frac{1}{4}$

- 7. **a.** Find the nth-order Taylor polynomials of the given function centered at the given point a, for n = 0, 1, and 2.
 - **b.** Graph the Taylor polynomials and the function.

$$f(x) = \sin x, a = \frac{3\pi}{4}$$

- a. Find the Taylor polynomial of order 0. Choose the correct answer below.
- **A.** $p_0(x) = \frac{\sqrt{2}}{2} \left(x \frac{3\pi}{4} \right)$
- **B.** $p_0(x) = \frac{\sqrt{2}}{2}$
- \bigcirc **c**. $p_0(x) = 0$
- $\bigcap_{\mathbf{p}} p_0(x) = 1$

Find the Taylor polynomial of order 1.

- **A.** $p_1(x) = \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} \left(x \frac{3\pi}{4} \right)$
- **B.** $p_1(x) = \frac{\sqrt{2}}{2}$
- **C.** $p_1(x) = \frac{\sqrt{2}}{2} \left(x \frac{3\pi}{4} \right) \frac{\sqrt{2}}{2} \left(x \frac{3\pi}{4} \right)^2$
- **D.** $p_1(x) = \left(x \frac{3\pi}{4}\right)$

Find the Taylor polynomial of order 2.

- **A.** $p_2(x) = \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} \left(x \frac{3\pi}{4} \right) \frac{\sqrt{2}}{4} \left(x \frac{3\pi}{4} \right)^2$
- **B.** $p_2(x) = \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{4} \left(x \frac{3\pi}{4} \right)$
- O. $p_2(x) = \frac{\sqrt{2}}{2} \left(x \frac{3\pi}{4} \right) \frac{\sqrt{2}}{2} \left(x \frac{3\pi}{4} \right)^2 \frac{\sqrt{2}}{4} \left(x \frac{3\pi}{4} \right)^3$
- **D.** $p_2(x) = \left(x \frac{3\pi}{4}\right) \frac{\sqrt{2}}{2} \left(x \frac{3\pi}{4}\right)^2$
- b. Choose the correct graph below.

$$f(x) = \sin x, a = \frac{3\pi}{4}$$

B.

Answers B.
$$p_0(x) = \frac{\sqrt{2}}{2}$$

A.
$$p_1(x) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \left(x - \frac{3\pi}{4} \right)$$

A.
$$p_2(x) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \left(x - \frac{3\pi}{4} \right) - \frac{\sqrt{2}}{4} \left(x - \frac{3\pi}{4} \right)^2$$

C.

8. Use the Comparison Test or the Limit Comparison Test to determine whether the following series converges.

$$\sum_{n=1}^{\infty} \frac{1}{9\sqrt{n} + \sqrt[3]{n}}$$

Choose the correct answer below.

- \bigcirc A. The Limit Comparison Test with $\frac{1}{\sqrt{n}}$ shows that the series converges.
- \bigcirc **B.** The Comparison Test with \sqrt{n} shows that the series diverges.
- \bigcirc **c.** The Limit Comparison Test with $\frac{1}{\sqrt[3]{n}}$ shows that the series converges.
- \bigcirc **D.** The Comparison Test with $\sqrt[3]{n}$ shows that the series converges.
- **E.** The Limit Comparison Test with $\frac{1}{\sqrt[3]{n}}$ shows that the series diverges.
- \bigcirc **F.** The Limit Comparison Test with $\frac{1}{\sqrt{n}}$ shows that the series diverges.

F. The Limit Comparison Test with $\frac{1}{\sqrt{n}}$ shows that the series diverges.

9. Use the Root Test to determine whether the series converges.

$$\sum_{k=1}^{\infty} \left(\frac{k}{k+1} \right)^{3k^2}$$

Select the correct choice below and fill in the answer box to complete your choice. (Type an exact answer in terms of e.)

- \bigcirc **A.** The series converges because ρ =
- \bigcirc **B.** The series diverges because ρ =
- \bigcirc **C.** The Root Test is inconclusive because ρ =

Answer: A. The series converges because $\rho = \frac{1}{e^3}$.

10. Evaluate the series or state that it diverges.

$$\sum_{k=1}^{\infty} \left[\frac{2}{5} \left(\frac{1}{7} \right)^{k} + \frac{3}{5} \left(\frac{7}{9} \right)^{k} \right]$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

- A. $\sum_{k=1}^{\infty} \left[\frac{2}{5} \left(\frac{1}{7} \right)^k + \frac{3}{5} \left(\frac{7}{9} \right)^k \right] =$ (Simplify your answer.)
- O B. The series diverges.

Answer: A. $\sum_{k=1}^{\infty} \left[\frac{2}{5} \left(\frac{1}{7} \right)^k + \frac{3}{5} \left(\frac{7}{9} \right)^k \right] = \frac{13}{6}$ (Simplify your answer.)

11. Use the Divergence Test to determine whether the following series diverges or state that the test is inconclusive.

$$\sum_{k=1}^{\infty} \frac{7k^2}{k!}$$

Choose the correct answer below.

- \bigcirc **A.** The series converges because $\lim_{k\to\infty} \frac{7k^2}{k!} \neq 0$.
- **B.** The series diverges because $\lim_{k \to \infty} \frac{7k^2}{k!} = 0$.
- O. The series converges because $\lim_{k\to\infty} \frac{7k^2}{k!} = 0$.
- **D.** The series diverges because $\lim_{k\to\infty} \frac{7k^2}{k!} \neq 0$.
- O E. The Divergence Test is inconclusive.

Answer: E. The Divergence Test is inconclusive.

Use the Integral Test to determine whether the following series converges after showing that the conditions of the Integral Test are satisfied.

$$\sum_{k=1}^{\infty} \frac{2e^k}{1+e^{2k}}$$

Determine which of the necessary properties of the function that will be used for the Integral Test has. Select all that apply.

- \blacksquare **A.** The function f(x) is a decreasing function for $x \ge 1$.
- **B.** The function f(x) is an increasing function for $x \ge 1$.
- \square **C.** The function f(x) is continuous for $x \ge 1$.
- **D.** The function f(x) has the property that $a_k = f(k)$ for k = 1, 2, 3, ...
- \square **E.** The function f(x) is negative for $x \ge 1$.
- **F.** The function f(x) is positive for $x \ge 1$.

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

- A. The series converges. The value of the integral $\int_{1}^{\infty} \frac{2e^{x}}{1+e^{2x}} dx$ is ______. (Type an exact answer.)
- O B. The series diverges. The value of the integral $\int \frac{2e^{x}}{1+e^{2x}} dx$ is ______. (Type an exact answer.)
- C. The Integral Test does not apply to this series.

Answers A. The function f(x) is a decreasing function for $x \ge 1$., C. The function f(x) is continuous for $x \ge 1$., D. The function f(x) has the property that $a_k = f(k)$ for k = 1, 2, 3, ..., F. The function f(x) is positive for $x \ge 1$.

A. The series converges. The value of the integral $\int_{-1}^{1} \frac{2e^{x}}{1+e^{2x}} dx \text{ is } 2\left(\frac{\pi}{2}-\tan^{-1}e\right).$

(Type an exact answer.)