| Student: \quadInstructor: Tong Ding, Purdue Math,
 Jennifer Hobbs, Stephanie Foster
 Course: MA166-123-Analytic Geom. And Assignment: Exam3
 Date: $\ldots \quad$Calc. II-Spring 2020 |
| :--- | :--- |

1. Determine whether the following series converges absolutely, converges conditionally, or diverges.

$$
\sum_{k=1}^{\infty}(-1)^{k} a_{k}=\sum_{k=1}^{\infty} \frac{(-1)^{k} k^{5}}{\sqrt{k^{12}+16}}
$$

Find $\lim a_{k}$. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. $k \rightarrow \infty$A. $\lim a_{k}=$ \qquad
$k \rightarrow \infty$
B. The limit does not exist.

Now, let $\sum a_{k}$ denote $\sum_{k=1}^{\infty} \frac{(-1)^{k} k^{5}}{\sqrt{k^{12}+16}}$. What can be concluded from this result using the Divergence Test?A. The series $\sum \mathrm{a}_{\mathrm{k}}$ must diverge.B. The series $\sum\left|a_{k}\right|$ must converge.C. The series $\sum\left|a_{k}\right|$ must diverge.D. The series $\sum \mathrm{a}_{\mathrm{k}}$ must converge.E. The Divergence Test is inconclusive.

Are the terms of the sequence $\left|a_{k}\right|$ decreasing after some point?yesno

Let $\sum a_{k}$ denote $\sum_{\mathrm{k}=1}^{\infty} \frac{(-1)^{\mathrm{k}} \mathrm{k}^{5}}{\sqrt{\mathrm{k}^{12}+16}}$. What can be concluded from these results using the Alternating Series Test?A. The series k^{6} must diverge.B. The series $\sum \mathrm{a}_{\mathrm{k}}$ must diverge.C. The series k^{6} must converge.D. The series $\sum \mathrm{a}_{\mathrm{k}}$ must converge.
E. The Alternating Series Test does not apply to this series.

Does the series $\sum\left|a_{k}\right|$ converge?A. yes, as can be determined by the Limit Comparison TestB. no, as can be determined by the Limit Comparison TestC. no, because of the Divergence Test

Does the series $\sum a_{k}$ converge absolutely, converge conditionally, or diverge?A. The series converges conditionally because $\sum\left|a_{k}\right|$ converges but $\sum \mathrm{a}_{\mathrm{k}}$ diverges.B. The series diverges because $\sum\left|a_{\mathrm{k}}\right|$ diverges.C. The series converges conditionally because $\sum \mathrm{a}_{\mathrm{k}}$ converges but $\sum\left|a_{\mathrm{k}}\right|$ diverges.D. The series converges absolutely because $\sum\left|a_{k}\right|$ converges.E. The series diverges because $\lim a_{k} \neq 0$.
$k \rightarrow \infty$

Answers A. $\lim \mathrm{a}_{\mathrm{k}}=$ \qquad $k \rightarrow \infty$
E. The Divergence Test is inconclusive.
yes
D. The series $\sum \mathrm{a}_{\mathrm{k}}$ must converge.
B. no, as can be determined by the Limit Comparison Test
C. The series converges conditionally because $\sum \mathrm{a}_{\mathrm{k}}$ converges but $\sum\left|a_{\mathrm{k}}\right|$ diverges.
2. Find the power series representation for g centered at 0 by differentiating or integrating the power series for f (perhaps more than once). Give the interval of convergence for the resulting series.

$$
g(x)=\ln (1-9 x) \text { using } f(x)=\frac{1}{1-9 x}
$$

Which of the following is the power series representation for g centered at 0 ?
A. $-\frac{1}{9} \sum_{\mathrm{k}=1}^{\infty} \frac{(9 \mathrm{x})^{\mathrm{k}}}{\mathrm{k}}$
C. $-9 \sum_{k=1}^{\infty} \frac{(9 x)^{k}}{k}$

The interval of convergence is \qquad .
(Simplify your answer. Type your answer in interval notation.)

Answers
D. $-\sum_{k=1}^{\infty} \frac{(9 x)^{k}}{k}$
$\left[-\frac{1}{9}, \frac{1}{9}\right]$
3. Find the interval of convergence of the series.
$\sum_{n=0}^{\infty} \frac{(x-4)^{n}}{n^{2} \sigma^{n}}$A. $3 \leq x \leq 5$B. $-10<x<10$C. $x<10$D. $-2 \leq x \leq 10$

Answer: D. $-2 \leq x \leq 10$
4. For the following telescoping series, find a formula for the nth term of the sequence of partial sums $\left\{\mathrm{S}_{n}\right\}$. Then evaluate $\lim S_{n}$ to obtain the value of the series or state that the series diverges.
$n \rightarrow \infty$

$$
\sum_{k=1}^{\infty} \frac{16}{(4 k-1)(4 k+3)}
$$

$S_{n}=$ \qquad
Select the correct choice and fill in any answer boxes in your choice below.
A. $\sum_{k=1}^{\infty} \frac{16}{(4 k-1)(4 k+3)}=$ \qquad (Simplify your answer.)B. The series diverges.

Answers $\frac{4}{3}-\frac{4}{4 n+3}$
A. $\sum_{\mathrm{k}=1}^{\infty} \frac{16}{(4 \mathrm{k}-1)(4 \mathrm{k}+3)}=\quad \frac{4}{3} \quad$ (Simplify your answer.)
5. Find the Taylor polynomials p_{1}, \ldots, p_{4} centered at $a=0$ for $f(x)=\boldsymbol{\operatorname { c o s }}(-2 x)$.
$\mathrm{p}_{1}(\mathrm{x})=$ \qquad
$p_{2}(x)=$ \qquad
$p_{3}(x)=$ \qquad
$p_{4}(x)=$ \qquad

Answers 1

$$
\begin{aligned}
& 1-2 x^{2} \\
& 1-2 x^{2} \\
& 1-2 x^{2}+\frac{2}{3} x^{4}
\end{aligned}
$$

6. Use the Ratio Test to determine if the series converges.

$$
\sum_{k=1}^{\infty} \frac{6(k!)^{2}}{7(2 k)!}
$$

Select the correct choice below and fill in the answer box to complete your choice.A. The series diverges because $r=$ \qquad .B. The series converges because $r=$ \qquad .C. The Ratio Test is inconclusive because $r=$ \qquad -

Answer: B. The series converges because $r=\frac{1}{4}$.
7. a. Find the nth-order Taylor polynomials of the given function centered at the given point a, for $\mathrm{n}=0,1$, and 2 .
b. Graph the Taylor polynomials and the function.

$$
f(x)=\boldsymbol{\operatorname { s i n }} x, a=\frac{3 \pi}{4}
$$

a. Find the Taylor polynomial of order 0 . Choose the correct answer below.
A. $p_{0}(x)=\frac{\sqrt{2}}{2}\left(x-\frac{3 \pi}{4}\right)$B. $p_{0}(x)=\frac{\sqrt{2}}{2}$C. $p_{0}(x)=0$D. $p_{0}(x)=1$

Find the Taylor polynomial of order 1.A. $p_{1}(x)=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\left(x-\frac{3 \pi}{4}\right)$B. $\mathrm{p}_{1}(\mathrm{x})=\frac{\sqrt{2}}{2}$C. $p_{1}(x)=\frac{\sqrt{2}}{2}\left(x-\frac{3 \pi}{4}\right)-\frac{\sqrt{2}}{2}\left(x-\frac{3 \pi}{4}\right)^{2}$D. $p_{1}(x)=\left(x-\frac{3 \pi}{4}\right)$

Find the Taylor polynomial of order 2.A. $p_{2}(x)=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\left(x-\frac{3 \pi}{4}\right)-\frac{\sqrt{2}}{4}\left(x-\frac{3 \pi}{4}\right)^{2}$
B. $p_{2}(x)=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{4}\left(x-\frac{3 \pi}{4}\right)$
C. $p_{2}(x)=\frac{\sqrt{2}}{2}\left(x-\frac{3 \pi}{4}\right)-\frac{\sqrt{2}}{2}\left(x-\frac{3 \pi}{4}\right)^{2}-\frac{\sqrt{2}}{4}\left(x-\frac{3 \pi}{4}\right)^{3}$
D. $p_{2}(x)=\left(x-\frac{3 \pi}{4}\right)-\frac{\sqrt{2}}{2}\left(x-\frac{3 \pi}{4}\right)^{2}$
b. Choose the correct graph below.

$$
f(x)=\boldsymbol{\operatorname { s i n }} x, a=\frac{3 \pi}{4}
$$

A.

B.

Answers
B. $\mathrm{p}_{0}(\mathrm{x})=\frac{\sqrt{2}}{2}$
A. $p_{1}(x)=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\left(x-\frac{3 \pi}{4}\right)$
A. $p_{2}(x)=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\left(x-\frac{3 \pi}{4}\right)-\frac{\sqrt{2}}{4}\left(x-\frac{3 \pi}{4}\right)^{2}$

c.
8. Use the Comparison Test or the Limit Comparison Test to determine whether the following series converges.

$$
\sum_{n=1}^{\infty} \frac{1}{9 \sqrt{n}+\sqrt[3]{n}}
$$

Choose the correct answer below.A. The Limit Comparison Test with $\frac{1}{\sqrt{n}}$ shows that the series converges.B. The Comparison Test with \sqrt{n} shows that the series diverges.C. The Limit Comparison Test with $\frac{1}{\sqrt[3]{\mathrm{n}}}$ shows that the series converges.D. The Comparison Test with $\sqrt[3]{n}$ shows that the series converges.E. The Limit Comparison Test with $\frac{1}{\sqrt[3]{n}}$ shows that the series diverges.
F. The Limit Comparison Test with $\frac{1}{\sqrt{n}}$ shows that the series diverges.

Answer:
F. The Limit Comparison Test with $\frac{1}{\sqrt{n}}$ shows that the series diverges.
9. Use the Root Test to determine whether the series converges.

$$
\sum_{k=1}^{\infty}\left(\frac{k}{k+1}\right)^{3 k^{2}}
$$

Select the correct choice below and fill in the answer box to complete your choice.
(Type an exact answer in terms of e.)A. The series converges because $\rho=$ \qquad .B. The series diverges because $\rho=$ \qquad .C. The Root Test is inconclusive because $\rho=$

Answer: A. The series converges because $\rho=\frac{1}{e^{3}}$
10. Evaluate the series or state that it diverges.

$$
\sum_{k=1}^{\infty}\left[\frac{2}{5}\left(\frac{1}{7}\right)^{k}+\frac{3}{5}\left(\frac{7}{9}\right)^{k}\right]
$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.A. $\sum_{\mathrm{k}=1}^{\infty}\left[\frac{2}{5}\left(\frac{1}{7}\right)^{\mathrm{k}}+\frac{3}{5}\left(\frac{7}{9}\right)^{\mathrm{k}}\right]=$ \qquad (Simplify your answer.)B. The series diverges.

Answer: A. $\sum_{\mathrm{k}=1}^{\infty}\left[\frac{2}{5}\left(\frac{1}{7}\right)^{\mathrm{k}}+\frac{3}{5}\left(\frac{7}{9}\right)^{\mathrm{k}}\right]=\frac{13}{6} \quad$ (Simplify your answer.)
11. Use the Divergence Test to determine whether the following series diverges or state that the test is inconclusive.

$$
\sum_{k=1}^{\infty} \frac{7 k^{2}}{k!}
$$

Choose the correct answer below.A. The series converges because $\lim _{\mathrm{k} \rightarrow \infty} \frac{7 \mathrm{k}^{2}}{\mathrm{k}!} \neq 0$.B. The series diverges because $\lim _{\mathrm{k} \rightarrow \infty} \frac{7 \mathrm{k}^{2}}{\mathrm{k}!}=0$.
c. The series converges because $\lim _{\mathrm{k} \rightarrow \infty} \frac{7 \mathrm{k}^{2}}{\mathrm{k}!}=0$.
D. The series diverges because $\lim _{k \rightarrow \infty} \frac{7 k^{2}}{k!} \neq 0$.E. The Divergence Test is inconclusive.

Answer: E. The Divergence Test is inconclusive.
12. Use the Integral Test to determine whether the following series converges after showing that the conditions of the Integral Test are satisfied.

$$
\sum_{k=1}^{\infty} \frac{2 e^{k}}{1+e^{2 k}}
$$

Determine which of the necessary properties of the function that will be used for the Integral Test has. Select all that apply.A. The function $f(x)$ is a decreasing function for $x \geq 1$.B. The function $f(x)$ is an increasing function for $x \geq 1$.C. The function $f(x)$ is continuous for $x \geq 1$.D. The function $f(x)$ has the property that $a_{k}=f(k)$ for $k=1,2,3, \ldots$.E. The function $f(x)$ is negative for $x \geq 1$.F. The function $f(x)$ is positive for $x \geq 1$.

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.A.

The series converges. The value of the integral $\int_{1}^{\infty} \frac{2 e^{x}}{1+e^{2 x}} \mathrm{dx}$ is \qquad .
(Type an exact answer.)B.

The series diverges. The value of the integral $\int_{1}^{\infty} \frac{2 e^{x}}{1+e^{2 x}} d x$ is \qquad $-$
(Type an exact answer.)C. The Integral Test does not apply to this series.

Answers A. The function $f(x)$ is a decreasing function for $x \geq 1$., C. The function $f(x)$ is continuous for $x \geq 1$., D. The function $f(x)$ has the property that $a_{k}=f(k)$ for $k=1,2,3, \ldots$. F. The function $f(x)$ is positive for $x \geq 1$.
A. The series converges. The value of the integral $\int_{1}^{\infty} \frac{2 e^{x}}{1+e^{2 x}} \mathrm{dx}$ is $2\left(\frac{\pi}{2}-\boldsymbol{\operatorname { t a n }}^{-1} e\right)$. (Type an exact answer.)

