MA 161 Midterm, September 2003

Name	
Student ID number	
Lecturer	
Recitation instructor	

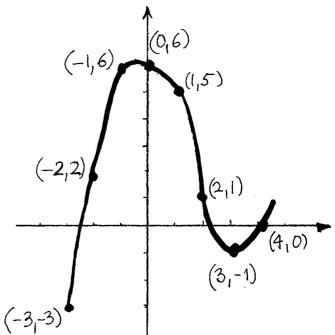
INSTRUCTIONS:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 16 problems, each worth 6 points. You get 2 points for coming and 2 if you fully comply with instruction 1. The maximum score is 100 points.
- 3. For each problem circle the answer of your choice, and also mark it on the scantron sheet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

Key: EECB EAEB AEBE DEAC

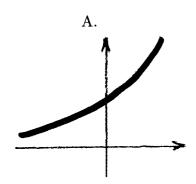
- 1. The solution of $|3 2x| \le 0.4$ is
 - A. [-0.2, 0.2]
 - B. [-1.7, 1.3]
 - C. [-0.4, 0.4]
 - D. [-1.3, 1.7]
 - E. [1.3, 1.7]

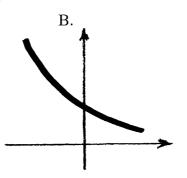
- 2. An equation of the line through (-2,1), parallel to the line 3x-2y=7 is
 - A. 3x 2y = -7
 - B. 3x 2y = 7
 - C. 2x + 3y = -4
 - D. 2x 3y = 8
 - E. None of these

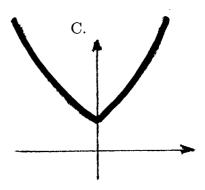

- 3. For $-1 \le x \le 1$, $tan(sin^{-1} x)$ equals A. $\sqrt{1-x^2}$

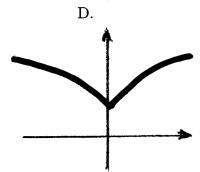
 - $B. \ \frac{\sqrt{1-x^2}}{x}$
 - $C. \frac{x}{\sqrt{1-x^2}}$
 - D. $x\sqrt{1-x^2}$
 - E. $\frac{1}{\cos x}$

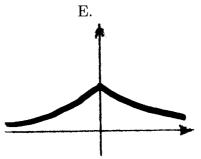
- 4. The domain of the function $\frac{\sqrt[4]{6+5x}}{x^2-9}$ is
 - A. $x \neq \pm 3$
 - B. $\left[-\frac{6}{5},3\right]\cup(3,\infty)$
 - C. $\left(-\infty, \frac{6}{5}\right]$
 - D. $(-\infty, -3) \cup \left(-3, \frac{6}{5}\right)$
 - E. $(3,\infty)$


- 5. At the surface of the ocean water pressure is the same as air pressure above the water, 15 lb/in^2 . Below the surface the water pressure increases by 4 lb/in^2 for every 10 ft of descent. At what depth is the pressure 21.4 lb/in^2 ?
 - A. 66.6 ft
 - B. 51.6 ft
 - C. 47.6 ft
 - D. 22 ft
 - E. 16 ft


- 6. Given the graph of f below, $(f \circ f)(-2)$ equals
 - A. 1
 - B. 2
 - C. 4
 - D. -2
 - E. 5




MA 161 Midterm, September 2003

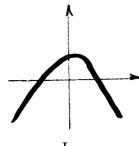

7. The graph of $y = \left(\frac{1}{2}\right)^{|x|}$ looks most like

8. The inverse of $f(x) = -\frac{2x+3}{x+2}$ is g(x) =

$$A. \ \frac{3x+2}{2x+1}$$

B.
$$-\frac{2x+3}{x+2}$$

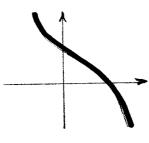
$$C. \ \frac{2x-1}{3x+2}$$


D.
$$-\frac{x+2}{5x-2}$$

E.
$$\frac{3x+5}{x+2}$$

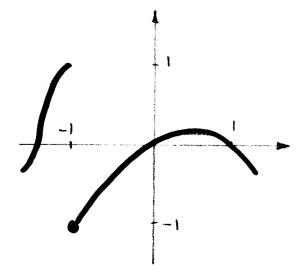
9. If $P = \log_2 6 + \log_2 8$ and $Q = 1 + 2 \ln x$ then

- A. $P = \log_2 48, \ Q = \ln(ex^2)$
- B. $P = \log_2 14$, $Q = \ln(ex^2)$
- C. $P = \log_2 14$, $Q = \ln(1 + e^2 x)$
- D. $P = \log_2 48$, $Q = \ln(1 + e^2 x)$
- E. $P = \log_2 14$, $Q = \ln(e + 2x)$


10. The graph of three functions is given below. Which is one-to-one?

I.

II.



III.

- A. Only I
- B. Only II
- C. Only III
- D. Only I and II
- E. Only II and III

- 11. If distance traveled in t seconds is $t^3/3$ meters, the average velocity between t=0 and t=3 is
 - A. 1 m/s
 - B. 3 m/s
 - C. 6 m/s
 - D. 8 m/s
 - E. 15 m/s

12. Given the graph of f below, which statement is true?

- I. $\lim_{x \to -1^-} f(x)$ exists
- II. $\lim_{x \to -1^+} f(x) = -1$ III. $\lim_{x \to 1} f(x)$ exists

- A. Only I.
- B. Only II.
- C. Only I and II.
- D. Only II and III.
- E. All three.

MA 161 Midterm, September 2003

- 13. Find such a number c that the finite limit $\lim_{x\to 3} \frac{cx^2+18}{x-3}$ exists.
 - A. 3
 - B. 1
 - C. -1
 - D. -2
 - E. An arbitrary c will do.

14. Find a real number a so that the function

$$h(x) = \begin{cases} \frac{x^2 - 2x - 3}{x + 1} & \text{if } x \neq -1\\ a & \text{if } x = -1 \end{cases}$$

is continuous.

- A. 3
- B. 3/2
- C. 0
- D. -3/2
- E. -4

- 15. $\lim_{x \to \infty} \frac{x^{3/2} + x}{x^2 2x^{1/2}} =$
 - A. 0
 - B. $\frac{1}{2}$
 - C. $\frac{3}{4}$
 - D. $\frac{3}{2}$
 - E. ∞

- 16. The graph of a function g is obtained from the graph of f by first compressing vertically by a factor of 3, then shifting to the right by 2 units and up by one unit. Then g(x) =
 - A. $f(\frac{x}{3}+1)+2$
 - B. $f(\frac{x+2}{3}+1)$
 - C. $\frac{1}{3}f(x-2) + 1$
 - D. 3f(x+2) 1
 - E. f(3(x-2)) 1