- 1. Let $m \ge 1$ and $n \ge 1$ be two natural numbers such that m > n. Which of the following is/are true?
 - (i) A linear system of m equations in n variables is always consistent.
 - (ii) A linear system of n equations in m variables is always consistent.
 - (iii) A homogeneous linear system of m equations in n variables always has infinitely many solutions.
 - (iv) A homogeneous linear system of n equations in m variables always has infinitely many solutions.
 - A. (ii) only
 - B. (iv) only
 - C. (ii) and (iv) only
 - **D.** (ii), (iii) and (iv) only
 - **E.** (i), (ii), (iii) and (iv)

2. Consider the linear system of equations

$$\begin{cases} 2x + y - z &= a \\ x - y + 2z &= 1 \\ 4x - y + 3z &= a^2. \end{cases}$$

Under which condition will the system be consistent?

A. a = 0 **B.** a = -2 **C.** a = 0 or 1 **D.** a = -1 or 2**E.** a = 1

- 3. Let A, B be two 4×4 matrices. Which of the following statements is ALWAYS true?
 - **A.** If A + B is singular, then either A or B is singular.
 - **B.** If AB is symmetric, then BA is also symmetric.
 - **C.** If A and B are similar matrices, then det(A) = det(B).
 - **D.** If AB = AC, then B = C.
 - **E.** If $A\mathbf{x} = \mathbf{b}$ is consistent for some $\mathbf{b} \neq \mathbf{0}$, then A is non-singular.
- 4. Assume that a 4×4 matrix A is row equivalent to

$$B = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

which of the following statements is true?

- **A.** B is not the reduced row echelon form of A.
- **B.** det(A) $\neq 0$.
- **C.** The null space of *A* has dimension 3.
- **D.** The column space of A has dimension 2.
- **E.** If $A\mathbf{x} = \mathbf{b}$ is consistent for some $\mathbf{b} \neq \mathbf{0}$, then it has infinitely many solutions.

5. Consider the linear system

For which value of a does the system have an infinite number of solutions?

- **A.** a = 0
- **B.** a = 2
- **C.** a = -2
- **D.** a = 3
- **E.** There is no *a* with such a property

6. If the determinant of

$2c_1$	a_1	$3b_1$
$2c_2$	a_2	$\frac{3b_2}{\frac{1}{2}b_3}$
$\frac{1}{3}c_{3}$	$\frac{1}{6}a_3$	$\frac{1}{2}b_3$

is 6, find the determinant of

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

A. 6B. −1

C. 1

D. -36

E. 36

7. Compute the determinant of the following matrix:

[0	3	2	0	0]
1	2	0	2	3
0	0	1	0	0
3	2	0	2	4
0	3	2	0	5

- **A.** 60
- **B.** 20
- **C.** 0
- **D.** -20
- **E.** -60

8. If
$$A = \begin{bmatrix} 0 & 0 & 4 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 then the (2, 1)-entry of A^{-1} is:
A. 1
B. 1/4
C. 0
D. -1/4
E. -1

9. Consider the vector space P_2 of all polynomials of degree at most 2. Find all real numbers a such that $t^2 - at + 1 - a^2$ is in the span of $t^2 - 2t + 1$, t - 1 and $3t^2 - 2t - 1$.

A. *a* can be any real number.

- **B.** $a = \pm 2$.
- **C.** a = -1 or a = 2.
- **D.** a = -2 or a = 1.
- **E.** a = 0.

10. Consider the linear system

$$\begin{bmatrix} 1 & 1 & 4 \\ 1 & 2 & 3 \\ 7 & 0 & 1 \\ 2 & 0 & a \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -b \\ 0 \\ 0 \\ b \end{bmatrix}.$$

Suppose that the solution set of this system is a **linear subspace** of \mathbb{R}^3 . Which of the following conditions must hold:

A. a = 0 **B.** a = b = 0 **C.** $a \neq 0$ **D.** a = b**E.** b = 0 11. Determine all the values for c such that the following vectors form a basis of \mathbb{R}^3 :

-1		4		2	
0	,	2	,	1	
1		4		c	

- (a) c = 2.
- (b) c = 4.
- (c) $c \neq 1$.
- (d) $c \neq 3$.
- (e) $c \neq 2$.
- 12. Determine the rank of the following matrix:

	1	$^{-1}$	3	2
A =	4	7	2	1
	-1	-10	7	$\begin{bmatrix} 2\\1\\5 \end{bmatrix}$

A. 0
B. 1
C. 2
D. 3
E. 4

13. Suppose that W consists of all vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ such that x + 3y - 2z = 0. Which of the following is a basis for W^{\perp} ?

A.
$$\begin{bmatrix} -3\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix}$$

B.
$$\begin{bmatrix} 1\\3\\-2 \end{bmatrix}$$

C.
$$\begin{bmatrix} 3\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\1 \end{bmatrix}$$

D.
$$\frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

E.
$$\begin{bmatrix} 4\\1\\2 \end{bmatrix}$$

14. Suppose that W consists of all vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ such that x + 3y - 2z = 0. What is the distance from $v = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ to W?

A.
$$\frac{\sqrt{14}}{2}$$

B. $\sqrt{5}$
C. 4
D. $\frac{\sqrt{5}}{2}$
E. 5

15. Consider the following inconsistent linear system $A\mathbf{x} = \mathbf{b}$, where

	[1	-2			[1]
A =	1	$ \begin{array}{c} -2 \\ 0 \\ 2 \end{array} $,	$\mathbf{b} =$	$\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
	1	2			4

The *least squares solution* of the linear system is

A.
$$\hat{x} = \begin{bmatrix} 7/8\\2 \end{bmatrix}$$

B. $\hat{x} = \begin{bmatrix} -1/3\\0 \end{bmatrix}$
C. $\hat{x} = \begin{bmatrix} 1\\-2/3 \end{bmatrix}$
D. $\hat{x} = \begin{bmatrix} 7/3\\3/4 \end{bmatrix}$

E. None of the above.

16. Let $V \subset \mathbb{R}^2$ be the set of vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ with $x \cdot y \ge 0$. Which of the following statements is true.

- **A.** V is a subspace.
- **B.** V is not a subspace since it does not contain the zero vector.
- C. V is not a subspace since it is not closed under vector addition.
- **D.** V is not a subspace since it is not closed under scalar multiplication.
- **E.** V is not a subspace since it is not closed under the dot product.

- 17. Let A be an $m \times n$ matrix. If W is the column space of A^T , then W^{\perp} (the orthogonal complement of W) is
 - (a) the null space of A
 - (b) the column space of ${\cal A}$
 - (c) the null space of ${\cal A}^T$
 - (d) the column space of A^T
 - (e) none of the above

18. Let

$$A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 2 & 1 & -4 & -1 \\ 3 & 2 & 4 & 0 \\ 0 & 3 & -1 & 0 \end{bmatrix}.$$

Then cofactor A_{32} of A is

- **A.** -2
- **B.** −1
- **C.** 0
- **D.** 1
- **E.** 2

- 19. Let P_4 be the space of all polynomials of degree at most 4. The subspace V of P_4 consists of all polynomials p(t) such that p(0) = 2p(1). Dimension of V is
 - **A.** 2
 - **B.** 3
 - **C.** 4
 - **D.** 5
 - **E.** 1

20. Let

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & c & 2 \\ 1 & -3 & c \end{bmatrix}.$$

Find all values of c for which the system $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.

A. c = -1, -2B. c = 1, -2C. c = 1, 2D. c = -1, 1E. c = -1, 2 21. Find a nonsingular matrix P such that

$$P^{-1} \begin{bmatrix} 2 & -2 & 1 \\ -1 & 3 & -1 \\ 2 & -4 & 3 \end{bmatrix} P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{bmatrix}.$$

A. $P = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$
B. $P = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$
C. $P = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$
D. $P = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}$
E. $P = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

22. Let
$$A = \begin{bmatrix} 1 & -2 & -6 \\ 0 & 2 & -5 \\ 0 & 1 & 8 \end{bmatrix}$$
. Find the eigenvalues λ of A .
A. $\lambda = 1, 2, 8$
B. $\lambda = 1, 3, 7$
C. $\lambda = 1, 2, 7$
D. $\lambda = 2, 3, 7$
E. $\lambda = -1, 3, 7$

23. Which one of the following matrices is **NOT** diagonalizable?

A.

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

 B.

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 5 & 0 \\ 0 & 6 & 9 \end{bmatrix}$$

 C.

$$\begin{bmatrix} 4 & -2 & 0 \\ -2 & 5 & 6 \\ 0 & 6 & 1 \end{bmatrix}$$

 D.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

 E.

$$\begin{bmatrix} 5 & 2 & 0 \\ 0 & 0 & 7 \\ 0 & 0 & 7 \end{bmatrix}$$

- 24. Which statement(s) about symmetric matrices with real entries is(are) TRUE?
 - (I) Every symmetric matrix is nonsingular.
 - (II) All the eigenvalues of each symmetric matrix are real numbers.
 - (III) There exists a symmetric matrix which is not diagonalizable.
 - (IV) Symmetric matrices are diagonalizable.
 - A. (II) only
 - **B.** (IV) only
 - C. (I) and (II)
 - **D.** (II) and (III)
 - **E.** (II) and (IV)
- 25. Consider the following linear system of differential equations:

$$\left[\begin{array}{c} x_1'(t) \\ x_2'(t) \end{array}\right] = \left[\begin{array}{cc} 3 & 2 \\ 2 & 3 \end{array}\right] \left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right].$$

The general solution of the linear system of differential equations is

$$\mathbf{A.} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = b_1 \begin{bmatrix} e^{3t} \\ e^{3t} \end{bmatrix} + b_2 \begin{bmatrix} e^{2t} \\ e^{2t} \end{bmatrix}$$
 for arbitrary constants $b_1, b_2.$

$$\mathbf{B.} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = b_1 \begin{bmatrix} 3e^{3t} \\ 2e^{3t} \end{bmatrix} + b_2 \begin{bmatrix} 2e^{2t} \\ 3e^{2t} \end{bmatrix}$$
 for arbitrary constants $b_1, b_2.$

$$\mathbf{C.} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = b_1 \begin{bmatrix} e^t \\ -e^t \end{bmatrix} + b_2 \begin{bmatrix} e^{5t} \\ e^{5t} \end{bmatrix}$$
 for arbitrary constants $b_1, b_2.$

$$\mathbf{D.} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = b_1 \begin{bmatrix} e^{-t} \\ e^{-t} \end{bmatrix} + b_2 \begin{bmatrix} e^{-5t} \\ -e^{-5t} \end{bmatrix}$$
 for arbitrary constants $b_1, b_2.$

$$\mathbf{E.} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = b_1 \begin{bmatrix} e^{6t} \\ e^{6t} \end{bmatrix} + b_2 \begin{bmatrix} e^{5t} \\ e^{5t} \end{bmatrix}$$
 for arbitrary constants $b_1, b_2.$