1. What is the determinant of the following matrix?

Γ	1	2	3	4]
	2	3	4	1
	3	4	1	2
L	4	1	2	3

A. 0

- B. 8
- C. 55
- D. 120
- E. 160

2. If det
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 4$$
, then det $\begin{bmatrix} a_1 & a_2 & 4a_3 - 2a_2 \\ b_1 & b_2 & 4b_3 - 2b_2 \\ \frac{1}{2}c_1 & \frac{1}{2}c_2 & 2c_3 - c_2 \end{bmatrix} =$
A. 8
B. 6

- C. 4 D. 2
- E. 1
- 3. Let A be an $n \times n$ matrix. Which of the following statements must be true?

(i) If $A^T = -A$, then det A must be zero. (ii) If $A^2 = A$, then A must be the identity matrix or the zero matrix. (iii) If det $A \neq 0$, then the homogeneous system $A\mathbf{x} = \mathbf{0}$ only has the trivial solution.

- A. None
- B. (iii) only
- C. (i) and (iii) only
- D. (ii) and (iii) only
- E. (i), (ii) and (iii)

4. Which of the following vectors in R_3 is a linear combination of

$$v_1 = \begin{bmatrix} 4 & 2 & -3 \end{bmatrix}, v_2 = \begin{bmatrix} 2 & 1 & -2 \end{bmatrix}, v_3 = \begin{bmatrix} -2 & -1 & 4 \end{bmatrix}$$

- A. $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ B. $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ C. $\begin{bmatrix} -2 & 2 & 3 \end{bmatrix}$ D. $\begin{bmatrix} 6 & 3 & 7 \end{bmatrix}$ E. None of the above.
- 5. Which of the following sets of 2×2 matrices are vector spaces? (Here \oplus and \odot are the usual addition and scalar multiplication of matrices.)
 - (i) {all matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that a + b = 3c d.}
 - (ii) {all 2×2 matrices A such that $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.}
 - (iii) {all 2×2 matrices A such that $A\mathbf{x} = \begin{bmatrix} 1\\2 \end{bmatrix}$ is consistent.}
 - A. (i) and (ii)
 - B. (ii) only
 - C. (ii) and (iii)
 - D. (i) only
 - E. All of them are vector spaces.
- 6. Let P_3 be the set of all polynomials of degree 3 or less. Which of the following subsets are subspaces of P_3 ? (Here \oplus and \odot are the standard addition and scalar multiplication.)
 - (i) {all polynomials p(x) such that $p(1) \neq 0$ }
 - (ii) {all polynomials p(x) such that p(x) = p(-x).}
 - (iii) {all polynomials p(x) with p(0) = p(1).}
 - A. (i) and (ii)
 - B. (ii) only
 - C. (ii) and (iii)
 - D. (i) and (iii)
 - E. All of them are vector spaces.

7. Let
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & t \\ 2 & 0 & 1 \\ 0 & 1 & t \end{bmatrix}$$
. Choose a value of t so that the null space of A has dimension 0.

- A. 0
 B. 1
 C. -1
 D. 2
- E. No such value of t exists.
- 8. Let A be a 3×5 matrix with rank 3. Which of the following statements is true?
 - A. A consistent linear system $A\mathbf{x} = \mathbf{b}$ must have a unique solution.
 - B. The null space of A has dimension 3.
 - C. The columns of A form a basis for the column space of A.
 - D. The system $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^3 .
 - E. The rows of A form a linearly dependent set.

9.	Choose a value of a so that the vector $\begin{bmatrix} a \\ 1 \\ a^3 \end{bmatrix}$.	$\begin{bmatrix} -9\\0\\1 \end{bmatrix}$ is orthogonal to the vector
	A. 1	
	B. 2	
	C. 3	

- D. 4
- E. None of the above

10. Let
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
. Then $\begin{bmatrix} 1 \\ -i \end{bmatrix}$

- A. is an eigenvector with eigenvalue 1.
- B. is an eigenvector with eigenvalue -1.
- C. is an eigenvector with eigenvalue i.
- D. is an eigenvector with eigenvalue -i.
- E. is not an eigenvector.
- 11. Consider the following differential equation:
 - dx/dt = x + 5ydy/dt = 5x + yWhich of the following is a solution:

C C

A.
$$x = 3e^{3t} + 2e^{-2t}$$
 and $y = 2e^{3t} - 2e^{-2t}$
B. $x = 3e^{4t} + 2e^{-4t}$ and $y = 2e^{6t} - 3e^{-t}$.
C. $x = 2e^{6t} + 2e^{-4t}$ and $y = 2e^{6t} - 2e^{-4t}$.
D. $x = 3e^{3t} + 2e^{2t}$ and $y = 2e^{3t} - 2e^{2t}$.
E. $x = 8e^t + 4e^{-3t}$ and $y = 9e^t - 4e^{-3t}$.

12. Suppose the vector
$$v = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
 is orthogonal to $\begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 0 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -1 \\ -1 \\ 1 \end{bmatrix}$. Then which of the following statement is always correct:
A. $a = 0, b = c = -d$
B. $b = 0, a = b = -d$
C. $c = a = 0, a = b = -c$
D. $d = 0, a = b = c$
E. $a = b = 0, c = 2d + 1$

13. Let $C[-\pi,\pi]$ be the real vector space of continuous functions defined on $[-\pi,\pi]$. Define an inner product on $C[-\pi,\pi]$ by

$$\langle f,g\rangle = \int_{-\pi}^{\pi} f(t)g(t)dt.$$

Then which of the following set of vectors are orthogonal?

- A. $1, t, t^2$
- B. $\sin^2 t, 1, \cos t$
- C. $1, e^t, e^{2t}$
- D. $1, t, t^2 \frac{\pi^2}{3}$,
- E. None of the above
- 14. Let A be an $n \times n$ matrix, which of the following statements is FALSE?
 - A. If A is a symmetric matrix, then A^T is also symmetric.
 - B. The product AA^T is always symmetric.
 - C. If A is skew symmetric, then A^3 is symmetric.
 - D. If A is symmetric, then $A + A^2$ is symmetric.
 - E. The sum $A + A^T$ is always symmetric.
- 15. A and B are $n \times n$ invertible matrices, which of the following statements is FALSE?
 - A. $(A^2)^{-1} = (A^{-1})^2$
 - B. $(A^{-1})^T = (A^T)^{-1}$.
 - C. $(AB^{-1})^{-1} = BA^{-1}$.
 - D. $(A + B^{-1})^{-1} = A^{-1} + B$.
 - E. $(aA)^{-1} = \frac{1}{a}A^{-1}$ for any nonzero real number a.

16. Consider the linear system

$$\begin{cases} x + 2y + 3z = a \\ 2x - y + z = b \\ 3x + y + 4z = c \end{cases}$$

Under which condition will this system be consistent?

A. a = c - 2bB. a = c - b. C. b = a + c. D. b = a - 2c. E. c = 2a + b.

- 17. Which of the following statements is FALSE?
 - A. The rows of any invertible $n \times n$ matrix span \mathbb{R}^n .
 - B. The rows of any orthogonal $n \times n$ matrix span \mathbb{R}^n .
 - C. The rows of any elementary $n \times n$ matrix span \mathbb{R}^n .
 - D. The rows of any symmetric $n \times n$ matrix span \mathbb{R}^n .
 - E. The rows of any nonsingular $n \times n$ matrix span \mathbb{R}^n .

18. Let $A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \\ 1 & 0 & 1 \end{bmatrix}$. Which of the following collections of vectors is linearly independent?

- A. The rows of the matrix A.
- B. The rows of the matrix A^T .
- C. The rows of the matrix $A \cdot A^T$.
- D. The first three rows of A.
- E. None of the above.

- 19. In this problem, A is a 5×8 matrix. Find the TRUE statement.
 - A. If $\operatorname{rref}(A)$ has five leading 1's then the columns of A are linearly independent.
 - B. If the number of leading 1's of $\operatorname{rref}(A)$ equals three, then one can pick three columns of A that span the column space of A.
 - C. If columns 1,3 and 8 of rref(A) have no leading 1 then A must have five linearly independent rows.
 - D. If columns 1, 3, 4, 5 and 8 of $\operatorname{rref}(A)$ are exactly the ones that have no leading 1 then there are five linearly independent rows in A.
 - E. None of the above.

20. What are the eigenvalues of the matrix
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
?

- A. 1, 2.
- B. 1, 2, 3.
- C. $\pm 1, 2.$
- D. $\pm 1, 2, 3.$
- E. None of the above.
- 21. Which of the following matrices is NOT diagonalizable?

A.

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
.

 B.
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

 C.
 $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$.

 D.
 $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$.

 E.
 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

- 22. For an $n \times n$ real matrix A, which of the following statements are true?
 - i) If $A^T = A$, then all eigenvalues of A are real.

ii) If A is an orthogonal matrix, then the columns of A form an orthonormal set.

iii) If all eigenvalues of A are equal to 1, then A is similar to the identity matrix I_n .

- A. i) only.
- B. ii) only.
- C. i) and ii) only.
- D. i), ii), iii).
- E. None of the above.
- 23. Assume A and B are $n \times n$ symmetric matrices. Which of the following statements are always true?
 - (i) A^2 is symmetric.
 - (ii) AB is symmetric.
 - (iii) ABA is symmetric.
 - A. none of these
 - B. (i) only
 - C. (ii) only
 - D. (i) and (iii) only.
 - E. (i), (ii) and (iii)

24. Let
$$A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 3 & 5 \\ 0 & 4 & -2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$. Compute the (2,3)-entry of $2A[B + A^T]$.

A. 4

- B. 8
- C. 26
- D. 52
- E. 104

25. Let W denote the vector space spanned by the vectors

$$\mathbf{u}_1 = \begin{bmatrix} 1\\0\\1\\2 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 0\\1\\1\\2 \end{bmatrix},$$

and let $\mathbf{v} = \begin{bmatrix} 1\\ 1\\ 1\\ -1 \end{bmatrix}$. Find the distance from \mathbf{v} to W.

A. 0 B. 1 C. 2 D. $\sqrt{2}$ E. 4