FINAL EXAM

NAME: _____

INSTRUCTOR'S NAME:

- 1. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron.
- 2. No books, notes, or calculators are allowed.
- 1. For what value of h is the following linear system CONSISTENT?

$$x - 3y = h$$
$$-2x + 6y = -5$$

- A. h = 0B. h = 5/2C. h = -5/2D. h = 5E. h = -5
- 2. For what values of r and s is the linear system INCONSISTENT?

$$x + y + z = 1$$
$$x + 3z = -2 + s$$
$$x - y + rz = 3$$

- A. r = 5 and s = 4
- B. $r \neq 5$ and s = 4
- C. r = 5 and $s \neq 4$
- D. $r \neq 5$ and $s \neq 4$
- E. None of the above

- 3. Suppose A and B are $n \times n$ matrices. Which of the following statements are always TRUE?
 - i) $(-A)^T = -(A^T)$ ii $(A+B)^T = A^T + B^T$ iii) $(A^TB)^T = AB^T$
 - A. i) only
 - B. ii) only
 - C. i) and ii) only
 - D. ii) and iii) only
 - E. i), ii), and iii)

4. Which of the following statements are always TRUE?

i) If a linear system $A\mathbf{x} = \mathbf{b}$ has *m* equations and *n* unknowns, and m < n, then the system must have infinitely many solutions.

ii) If A and B are $n \times n$ matrices and AB is nonsingular, then both A and B must be nonsingular.

iii) If A, B, and C are $n \times n$ matrices such that AB = AC, then B = C.

- A. i) only
- B. ii) only
- C. i) and ii) only
- D. ii) and iii) only
- E. i), ii), and iii)

5. Which of the following are always true for real square matrices A?

i) if λ is an eigenvalue for A then $-\lambda$ is an eigenvalue for -A.

ii) if \mathbf{v} is an eigenvector for A then \mathbf{v} is also an eigenvector for 2A.

iii) The eigenspace for the matrix A for the eigenvalue λ has dimension equal to the multiplicity of the root λ in the characteristic polynomial $p(\lambda) = \det(\lambda I - A)$.

A. i) and iii) only

B. i) only

- C. iii) only
- D. i), ii) and iii) only
- E. i) and ii) only

6. Let
$$\mathbf{v_1} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 4\\0\\0 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} 5\\1\\1 \end{bmatrix}$, $\mathbf{v_4} = \begin{bmatrix} 1\\1\\2 \end{bmatrix}$. Which of the following statements are true?

- i) The set $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}\}$ is linearly independent.
- ii) The set $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}\}$ spans R^3 .
- iii) The set $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}\}$ is a basis for \mathbb{R}^3 .
- A. All of the above
- B. None of the above
- C. i) only
- D. ii) only
- E. ii) and iii) only

- 7. For the inverse of the matrix $\begin{bmatrix} 0 & 0 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, the entry in the second row and first column is
 - A. 0
 - B. 1
 - C. -1
 - D. 1/2
 - E. -1/2

8. Given that

$$\det \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \\ d_1 & d_2 & d_3 & d_4 \end{bmatrix} = 5,$$

what is the determinant of

$$\begin{bmatrix} a_4 & a_2 & a_3 & a_1 \\ b_4 & b_2 & b_3 & b_1 \\ 2c_4 + 3a_4 & 2c_2 + 3a_2 & 2c_3 + 3a_3 & 2c_1 + 3a_1 \\ d_4 & d_2 & d_3 & d_1 \end{bmatrix}?$$

- A. 30
- B. -30
- C.~10
- D. -10
- E. 5

9. If A is a 3×3 matrix with det A = 3, and B = 2A, what is det $(A^T B^{-1})$?

- A. 18
- B. 1/18
- C. 1/8
- D. 1/2
- E. 24

10. Compute the value of the following determinant:

	Γ0	3	2	0	0-
	3	2	0	2	3
\det	0	0	1	0	0
	4	2	0	2	4
		3	2	0	5

- A. -30
- B. -15
- C. 0
- D. 15
- E. 30

- 11. The dimension of the subspace of R_5 which is spanned by [1, 2, 3, 4, 5], [0, 2, 0, 0, 0], [0, 0, 0, 0, 3], [2, 4, 6, 8, 13], and [2, 6, 6, 8, 10] is
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 5

12. Let $L: \mathbf{R}^3 \to \mathbf{R}^3$ be defined by:

$$L([x, y, z]) = [ax2 + bx, cy + z, d]$$

Which of the following choices of the parameters a, b, c, d gives a linear transformation?

A. a = 1, b = 2, c = 3, d = 0B. a = 0, b = 1, c = 0, d = 1C. a = 0, b = 2, c = 4, d = 0D. a = 1, b = 0, c = 0, d = 1E. a = b = c = d = 1 13. Let W be the subspace of \mathbf{R}^3 spanned by

$$\left\{ \begin{bmatrix} 2\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}.$$

If we apply the Gram-Schmidt procedure to this set to obtain an orthonormal basis for W, we obtain the set

A.
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$
.
B. $\left\{ \frac{1}{8} \begin{bmatrix} 2\\2\\0 \end{bmatrix}, \frac{1}{3} \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$.
C. $\left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$.
D. $\left\{ \frac{1}{2} \begin{bmatrix} 2\\2\\0\\0 \end{bmatrix}, \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} \right\}$.
E. $\left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix} \right\}$.

- 14. Let A be an $n \times n$ nonsingular matrix. Which of the following statements must be true?
 - i) $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions.
 - ii) A must be row equivalent to the identity matrix.
 - iii) A has rank n.
 - iv) det $A \neq 0$.
 - A. All are all true.
 - B. i), ii), and iii) only
 - C. iii) and iv) only
 - D. ii), iii), and iv) only
 - E. i), iii), and iv) only

- 15. Let A be an $m \times n$ matrix. Which of the following statements must be true regarding the nullity (dimension of the null space) of A?
 - i) The nullity of A is the same as the number of nonzero rows in a row echelon form of A.
 - ii) The nullity of A is the same as the dimension of the column space of A.
 - iii) The nullity of A is the same as the nullity of A^T .
 - A. None of the statements are correct.
 - B. i) and ii) only
 - C. i) and iii) only
 - D. ii) and iii) only
 - E. All three statements are correct.

16. Let A and B be $n \times n$ matrices. Which of the following statements must be true?

i) If B can be obtained from A by a sequence of row operations, and λ is an eigenvalue for A, then λ is also an eigenvalue for B.

ii) $\det(A+B) = \det A + \det B$.

- iii) If A and B are both nonsingular, then A + B is nonsingular.
- A. None of the statements are correct.
- B. All of the statements are correct.
- C. i) only
- D. i) and ii) only
- E. i) and iii) only

- 17. Which of the following subsets of R_3 are subspaces?
 - i) The set of all vectors [x, y, z] satisfying the condition x + 2y 3z = 1
 - ii) The set of all vectors [x, y, z] satisfying the condition z = xy
 - iii) The set of all vectors $\left[x,y,z\right]$ satisfying the condition x=y
 - A. i) only
 - B. ii) only
 - C. iii) only
 - D. i) and ii) only
 - E. ii) and iii) only

i) λ = 2 is an eigenvalue whose eigenspace has dimension 1.
ii) λ = 1 is an eigenvalue whose eigenspace has dimension 2.
iii) λ = 0 is an eigenvalue whose eigenspace has dimension 2.

- A. i) only
- B. ii) only
- C. iii) only
- D. ii) and iii) only
- E. None of the statements i)-iii) are correct.

19. Suppose that A is a 2×2 matrix having eigenvalues λ_1 and λ_2 where $\lambda_1 \neq \lambda_2$. Which of the following statements must be true?

i) A is diagonalizable.

ii) if \mathbf{v}_1 is an eigenvector for λ_1 , and \mathbf{v}_2 is an eigenvector for λ_2 , then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly independent set.

iii) if \mathbf{v}_1 is an eigenvector for λ_1 , and \mathbf{v}_2 is an eigenvector for λ_2 , then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal set.

- A. i) only
- B. ii) only
- C. iii) only
- D i) and ii) only
- E. i) and iii) only

20. Let
$$L : \mathbb{R}^3 \to \mathbb{R}^2$$
 be defined by $L\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2\\3x_2 - 2x_3\end{bmatrix}$. Then the standard matrix representing L is

A.
$$\begin{bmatrix} 0 & 3 & -2 \\ 1 & 2 & 0 \end{bmatrix}$$

B. $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & -2 \end{bmatrix}$
C. $\begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}$
D. $\begin{bmatrix} 1 & 0 \\ 2 & 3 \\ 0 & -2 \end{bmatrix}$
E. $\begin{bmatrix} 0 & 1 \\ 3 & 2 \\ -2 & 3 \end{bmatrix}$

21. Let W be the subspace of \mathbb{R}^4 spanned by

٢1٦		ך 5 ק		F 9 -		[0]	
2		6		10		0	
3	,	7	,	11	,	0	•
$\lfloor 4 \rfloor$		8		12		1	

Then the dimension of the orthogonal complement W^{\perp} is

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4
- 22. Consider the following inconsistent linear system $A\mathbf{x} = \mathbf{b}$, where

	$\lceil 2 \rceil$	1			$\lceil 1 \rceil$	
A =	1	2	,	$\mathbf{b} =$	0	
	3	1_			$\begin{bmatrix} 0 \end{bmatrix}$	

The *least squares solution* of the linear system is

A.
$$\hat{\mathbf{x}} = \begin{bmatrix} 1\\ 1/7 \end{bmatrix}$$

B. $\hat{\mathbf{x}} = \begin{bmatrix} 1/7\\ 0 \end{bmatrix}$
C. $\hat{\mathbf{x}} = \begin{bmatrix} 1/7\\ 1/7 \end{bmatrix}$
D. $\hat{\mathbf{x}} = \begin{bmatrix} -1\\ 1/7 \end{bmatrix}$
E. $\hat{\mathbf{x}} = \begin{bmatrix} 0\\ -1/7 \end{bmatrix}$

23. Let $A = \begin{bmatrix} 1 & 4 \\ 1 & -2 \end{bmatrix}$. For which matrix P is it true that $P^{-1}AP = D$, where D is a diagonal matrix?

A.
$$P = \begin{bmatrix} 1 & -1 \\ 4 & 1 \end{bmatrix}$$

B.
$$P = \begin{bmatrix} 4 & -1 \\ 1 & 1 \end{bmatrix}$$

C.
$$P = \begin{bmatrix} -1 & 1 \\ 4 & 1 \end{bmatrix}$$

D.
$$P = \begin{bmatrix} 4 & 1 \\ 1 & 1 \end{bmatrix}$$

E.
$$P = \begin{bmatrix} 1/3 & 2/3 \\ 1/6 & -1/6 \end{bmatrix}$$

- 24. Which of the following statements are always true for a real square matrix A?i) If A is symmetric, all eigenvalues of A are real.

 - ii) If A is an orthogonal matrix, then the columns of A form an orthonormal set.
 - iii) If all eigenvalues of A are 1 then A is similar to the identity matrix.
 - A. i) only
 - B. iii) only
 - C. i) and ii) only
 - D. i) and iii) only
 - E. i), ii), and iii)

25. For the differential equation

$$\mathbf{x}' = \begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix} \mathbf{x}$$

with initial condition $\mathbf{x}(0) = \begin{bmatrix} 3\\1 \end{bmatrix}$, we have $\mathbf{x}(1) =$

A.
$$(2e^3 + e^{-1}, 2e^3 - e^{-1})^T$$

B. $(3e^2 + e^3, e^2 - e^3)^T$
C. $(e^2 - e^3, e^2 + e^3)^T$
D. $(e^4 - 5, e^4 + 5)^T$
E. $(e + e^2, e - e^2)^T$