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1. The area of the triangle with vertices (2, 1, 1), (1, 2, 1), (1, 1, 2) is

A.
7

2

B.
3

2

C.
√

2

D.

√
3

2
E. 2

2. The arclength of the curve ~r(t) = 2t~ı + t2 ~ + (ln t) ~k for 1 ≤ t ≤ 2 is

A. 5

B.
35

3
C. 4 + ln 2

D. 3 + ln 2

E. 5 + ln 2
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3. A particle has position ~r(t) with acceleration ~a(t) = t~ı + 3t2 ~k and the initial conditions

~v(0) =~ı +~ + ~k and ~r(0) = ~0. Then ~r(1) =

A. ~ı + 5
4
~k

B. 5~ı + 7~ + ~k

C. 1
6
~ı + 1

4
~k

D. ~ı +~ + ~k

E. 7
6
~ı +~ + 5

4
~k

4. A continuous function f(x, y) defined on the region D = [1, 3] × [0, 1] has its absolute
minimum value equal to 4 and its absolute maximum value equal to 5.

Which of the following numbers could equal

∫∫
D

f(x, y) dA ?

A. 7.9

B. 8.8

C. 10.3

D. 11.6

E. 13.1
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5. Suppose that z is defined as a function of x and y by the equation

cos(xyz) = x+ 3y + 2z.

Use implicit differentiation to find the value of
∂z

∂y
(0, 1).

A. −1/2

B. −3/2

C. 1/3

D. −2/3

E. −3/5

6. Consider the tangent plane to the surface z = ln(x− 4y) at the point (9, 2, 0).
This tangent plane also contains the point (2, 1, λ). Find λ.

A. −3

B. −2

C. 2

D. ln 2

E. −8
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7. Find the directional derivative of f(x, y) = xey
2

+ ex+y at the point (0, 0) in the direction

of the vector 3~i− 4~j.

A. 6/5

B. −6/5

C. 0

D. −2/5

E. 2/5

8. Suppose E is the region bounded above by the cylinder x2 + z2 = 5, below by the plane

z = 1, and on the sides by the planes y = −1 and y = 2. Find

∫∫∫
E

z dV .

A. 4

B. 8

C. 12

D. 16

E. 24
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9. The points P = (0, 1) and Q =

(
1√
2
,

1√
2

)
are critical points of the function

f(x, y) = 2x3 − 3x2y − y3 + 3y.

Classify each as a relative maximum, relative minimum, or saddle point.

A. f has a relative minimum at P and a relative maximum at Q

B. f has a relative maximum at P and a saddle point at Q

C. f has a saddle point at P and a relative minimum at Q

D. f has relative maxima at P and Q

E. f has relative minima at P and Q

10. A lamina with density ρ(x, y) = xy occupies the region of the plane bounded by y = x2,

y = 1 and x = 0. The mass of the lamina is equal to
1

6
. Find the y-coordinate of its center

of mass.

A.
3

4

B.
7

8

C.
2

3

D.
5

6

E.
12

21
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11. Find the surface area of the part of the paraboloid z =
x2

2
+
y2

2
that lies between the

cylinders x2 + y2 = 8 and x2 + y2 = 24.

A. 196π/3

B. (24
√

24− 8
√

8)π/3

C. (
√

24−
√

8) π/3

D. (
√

24−
√

8)4π

E. 164π/3

12. Evaluate the line integral

∫
C

~F · d~r where ~F(x, y, z) = y~ı− x~ + xy ~k

and C is parametrized by ~r(t) = sin t ~ı + cos t ~ + t ~k with 0 ≤ t ≤ π.

A.
π

2

B. −π
2

C. π

D. −π
E. 0
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13. Use Green’s Theorem to evaluate

∫
C

x2 dy where C is the boundary of the rectangle

with vertices {(0, 0), (2, 0), (2, 3), (0, 3)}, oriented counterclockwise.

A. 4

B. 8

C. 12

D. 16

E. 24

14. If f(x, y, z) = x2yz − xy2 + 2xz2 then div(grad(f)) at (1, 1, 1) is equal to:

A. 0

B. 1

C. 2

D. 3

E. 4
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15. Let S be the parametric surface

~r(u, v) = v cosu~i + v sinu~j + 2v2 ~k

with (u, v) in [0, 2]× [0, 2]. Then S is part of a

A. circular paraboloid

B. cone

C. cylinder

D. ellipsoid

E. sphere

16. Find the surface area of the parametric surface ~r(u, v) = (u + v)~i + v~j + u~k with (u, v)
in [0, π]× [0,

√
3].

A. 4π

B. 2π

C. 2π
√

3

D. π
√

3

E. 3π
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17. Let S be the part of the sphere x2 + y2 + z2 = 1 above the plane z =
1

2
. Compute the

surface integral ∫∫
S

12z2 dS

A. 2π

B. π

C. 9π

D. 7π

E. 8π

18. The flux of the vector field ~F(x, y, z) = x~ı + (x+ y)~ + z ~k across the surface of the plane
x+ y + z = 1 in the first octant, oriented upward, is equal to:

A.
3

4

B.
4

3

C.
2

3

D.
3

2

E.
1

2
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19. Let S be the part of the circular paraboloid z = x2 + y2 below the plane z = 4 with

upward orientation. Let ~F(x, y, z) = xz~ + yz~k. Compute

∫∫
S

curl ~F · ~n dS. Hint: You

may need to use one or both of these integrals:

∫ 2π

0

(cos t)2dt = π and

∫ 2π

0

(sin t)2dt = π.

A. 32π

B. 16π

C. 8π

D. 4π

E. 2π

20. Suppose ~F(x, y, z) = 2xy2 ~ı + 2yx2 ~− (x2 + y2)z ~k and S is the boundary surface of the
solid enclosed by the cylinder x2 + y2 = 1 and the planes z = −1 and z = 1. S is a closed

surface oriented by the outward normal. Calculate the flux integral

∫∫
S

~F · d~S.

A. 0

B. π

C. 2π

D. 3π

E. 4π
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