- 1. Let C be the curve given by $\vec{r}(t) = \langle 4\sqrt{t}, t, 5-t^2 \rangle$ for t > 0. At what point does the tangent line to C at (4,1,4) intersect the xy plane?
 - A. (0,1,0)
 - B. $(4\sqrt{5}.\sqrt{5},0)$
 - C. (2,1,0)
 - D. (8,3,0)
 - E. (0, -1, 0)

- 2. The arclength of the curve $\vec{r}(t)=2t\vec{i}+t^2\vec{j}+(\ln t)\vec{k}$ for $2\leq t\leq 4$ is:
 - A. $\frac{17}{4}$
 - B. $4 + \ln 2$
 - C. $16 + \ln 2$
 - D. $\frac{15}{4}$
 - E. $12 + \ln 2$

- 3. A particle moves in space with acceleration $\vec{a}(t) = e^t \vec{k}$ and initial velocity and position given by $\vec{v}(0) = \vec{0}$, $\vec{r}(0) = \vec{j} + \vec{k}$. Where is the particle at time t = 2?
 - A. $(1, 1, e^2)$
 - B. $(0, 1, e^2)$
 - C. (0, 1, e 1)
 - D. $(1, 1, e^2 2)$
 - E. $(0, 1, e^2 2)$

4. Suppose that z is defined implicitly as a function of x and y by the equation

$$e^{yz} + \sin(\pi yz) - xyz = 0.$$

What is the value of $\frac{\partial z}{\partial x}$ at (e, 1, 1)?

- A. $-\frac{1}{e}$
- B. $\frac{1}{e}$
- C. $-\frac{1}{\pi}$
- D. $\frac{1}{\pi}$
- E. $\frac{1}{e-\pi}$

5. The surface area of a rectangular box is given by the function

$$S(x, y, z) = 2xy + 2yz + 2xz$$

where x, y, z are its sides. These are measured as x = 10 cm, y = 20 cm, z = 30 cm with possible errors in measurements as much as 0.1 cm. Use differentials to estimate the maximum error in the calculated surface area.

- $A. 12 cm^2$
- B. 24 cm^2
- $C.~36~cm^2$
- $D. 48 cm^2$
- $E.~60~\mathrm{cm}^2$

6. Given $\vec{a}=\langle 1,-1,2\rangle$ and $\vec{b}=\langle 2,1,0\rangle$, find t such that the vector $\vec{c}=\langle 5,t-1,2\rangle$ is perpendicular to $\vec{a}\times\vec{b}$.

A.
$$t = 1$$

B.
$$t = 2$$

C.
$$t = -1$$

D.
$$t = -2$$

E.
$$t = 0$$

- 7. The intersection of the hyperbolic paraboloid $x^2-y^2-z-1=0$ with the yz-plane consists of
 - A. a hyperbola and a parabola
 - B. a hyperbola
 - C. an ellipse
 - D. two lines
 - E. a parabola

- 8. Let $f(x,y) = \sqrt{x^2 + y}$. The equation for the tangent plane to z = f(x,y) at (2,1) is
 - A. $2\sqrt{5}z 4x y = 1$
 - B. $2\sqrt{5}z 4x y = 10$
 - C. 2z 2x y = 1
 - D. 2z 2x y = 10
 - E. $2\sqrt{5}z 2x y = 9$

- 9. The critical points of $f(x,y) = 3x^3 + 3y^3 + x^3y^3$ are:
- A. (0,0),(1,-1)
- B. (0,0)
- C. (1,1)
- D. $(0,0), (-3^{1/3}, -3^{1/3})$
- E. $(-3^{1/3}, -3^{1/3}), (1, 1)$

- 10. The directional derivative of the function $f(x,y) = 4xy + e^{xy}$ at the point (0,1) and in the direction of $\vec{v} = \langle 3, -4 \rangle$ is:
 - A. 3
 - B. 15
 - C. $\langle 5, 0 \rangle$
 - D. $\langle 3, -4 \rangle$
 - E. -15

$$z = \frac{1}{u^2 + v}$$
, $u(s,t) = t + s^2$, $v(s,t) = \ln(t)$

then $\frac{\partial z}{\partial t}$ is:

A.
$$\frac{-(1+\frac{1}{t})}{(t+s^2)^2 + \ln t}$$

B.
$$\frac{-(2(t+s^2) + \frac{\ln t}{t})}{(t+s^2)^2 + \ln t}$$

C.
$$\frac{-(2(t+s^2)+\frac{1}{t})}{((t+s^2)^2+\ln t)^2}$$

D.
$$\frac{-(u+1)}{(u^2+v)^2}$$

E.
$$\frac{-(2u+1)}{u^2+v}$$