MA 26100

FINAL EXAM Test Number 01

Dec. 19, 2008

Name:		
Student I.D. #:		
Lecturer:		
Recitation Instructor		
Time of Recitation Class	Sec:	

Instructions:

- 1. This exam contains 22 problems worth 9 points each.
- 2. Please supply <u>all</u> information requested above and on the scantron. Make sure you fill in "Test Number 01" on the scantron.
- 3. Work only in the space provided, or on the backside of the pages. Mark your answers clearly on the scantron. Also circle your choice for each problem in this booklet.
- 4. No books, notes, or calculator, please.

1. Let P be the plane passing through the origin containing the vectors (2,0,1) and (1,-1,1). For what value of b is the vector (1,1,b) in the plane P?

A.
$$b = -1$$

B.
$$b = 1$$

C.
$$b = -2$$

D.
$$b = 2$$

E.
$$b = 0$$

2. Find an equation for the line through the point (1, 4, -3), and parallel to the line x = 5 + 3t, y = 1 - t, z = 1 + 3t.

A.
$$x = 1 + 5t$$
, $y = 4 + t$, $z = -3 + t$

B.
$$x = 3t$$
, $y = -t$, $z = 3t$

C.
$$x = 1 + 3t$$
, $y = 4 - t$, $z = -3 + 3t$

D.
$$x = 5 + t$$
, $y = 1 + 4t$, $z = 1 - 3t$

E.
$$x = 1 - 3t$$
, $y = 4 + 3t$, $z = 3 + t$

- 3. A vector parallel to the line of intersection of the planes x-2y-z=6 and 3x-y+z=4 is
- **A.** (3, 4, -5)
- **B.** (3, 1, -1)
- **C.** (2, 4, -3)
- **D.** (3, 4, -1)
- **E.** (5, -4, -1)

- **4.** Find the point on the upper part of the ellipsoid $x^2 + 2y^2 + z^2 = \frac{5}{8}$ at which the normal is parallel to $\langle 1, 1, 1 \rangle$.
 - **A.** $(\sqrt{\frac{5}{8}}, 0, 0)$
 - **B.** $((0, \sqrt{\frac{5}{16}}, 0))$
 - C. $(\sqrt{\frac{1}{8}}, 0, \sqrt{\frac{1}{2}})$
 - **D.** $(\frac{1}{2}, \frac{1}{4}, \frac{1}{2})$
 - **E.** $(0,0,\sqrt{\frac{5}{8}})$

- 5. An equation of the tangent plane to z = xy at (1, 2, 2) is
- **A.** z = 2x + y + 2
- B. $z = \frac{1}{2}(x+y)$
- C. z = x y + 2
- **D.** z = 2y x + 1
- E. z = 2x + y 2

- **6.** Let $f(x,y) = \ln(2x y)$. Using differentials, the approximate value of f(1.01, 0.95) is
 - **A.** 0.05
 - **B.** 0.07
 - **C.** 0.1
 - **D.** 0.02
 - **E.** 0.25

- 7. Let z=f(x,y) be differentiable, and let $x=s+t, \ y=st.$ Then $\frac{\partial z}{\partial s}$ at s=1, t=2
 - **A.** 1
 - B. -1
 - **C.** 0
 - D. 1/2
 - E. need more information.

- 8. The maximum rate of change of $f(x,y) = x^2 + xy$ at (1,2) is in the direction of the vector
 - A. 2i + j
 - **B.** i + 2j
 - C. 4i + j
 - D. i+j
 - E. 5i + j

- 9. Let M be the maximum and m be the minimum of f(x,y) = xy on $x^4 + y^4 = 1$. Then (M,m) =
 - **A.** $(\sqrt{\frac{1}{2}}, -\sqrt{\frac{1}{2}})$
 - **B.** (1,0)
 - C. (1,-1)
 - D. $(\frac{1}{2}, -\frac{1}{2})$
 - E. $(\sqrt{\frac{1}{2}},,-1)$

- 10. Let γ be a wire in the shape of the curve $\mathbf{r}(t)=\langle 2t,1,t^2\rangle,\ 0\leq t\leq \sqrt{3}$ with mass $\rho(x,y,z)=3x.$ Then the mass of γ is
 - **A.** $2\sqrt{3}$
 - **B.** 8
 - **C.** $4\sqrt{3}$
 - **D.** 12
 - **E.** 28

11. Interchange the limits of integration and evaluate

$$\int_0^4 \int_{\sqrt{y}}^2 \frac{ye^{x^2}}{x^3} dx dy.$$

- A. $(e^4-1)/8$
- B. $e^4 1$
- C. $(e^4-1)/4$
- D. $e^4/4$
- E. $(e^4-1)/2$

- 12. Let Ω be the region inside the sphere $x^2+y^2+z^2=25$ and above the cone $z=\sqrt{x^2+y^2}+1$. Then the volume of Ω is
 - **A.** $\int_0^{2\pi} \int_0^1 \int_{r+1}^{\sqrt{25-r^2}} r dz dr d\theta$
 - **B.** $\int_0^{2\pi} \int_0^3 \int_{r+1}^{\sqrt{25-r^2}} r dz dr d\theta$
 - C. $\int_0^{2\pi} \int_0^5 \int_{r+1}^{\sqrt{25-r^2}} r dz dr d\theta$
 - **D.** $\int_0^{2\pi} \int_0^2 \int_{r+1}^{\sqrt{25-r^2}} r dz dr d\theta$
 - E. $\int_0^{2\pi} \int_0^4 \int_{r+1}^{\sqrt{25-r^2}} r dz dr d\theta$

$$\int_{-2}^2 \int_0^{\sqrt{4-x^2}} \int_{-\sqrt{4-x^2-y^2}}^0 z^2 dz dy dx =$$

- A. $\int_0^{\pi/2} \int_0^{\pi} \int_0^2 \rho^3 \cos^2 \phi \sin \phi \, d\rho d\theta d\phi$
- B. $\int_{\pi/2}^{\pi} \int_0^{\pi} \int_0^2 \rho^3 \cos^2 \phi \sin \phi \, d\rho d\theta d\phi$
- C. $\int_{\pi/2}^{\pi} \int_0^{\pi} \int_0^2 \rho^4 \cos^2 \phi \sin \phi \, d\rho d\theta d\phi$
- D. $\int_0^{\pi/2} \int_0^{\pi} \int_0^2 \rho^4 \cos^2 \phi \sin \phi \, d\rho d\theta d\phi$
- E. $\int_0^{\pi/2} \int_0^{2\pi} \int_0^2 \rho^4 \cos^2 \phi \sin \phi \, d\rho d\theta d\phi$

- 14. Let Ω be the portion of the disk $\{x^2+y^2\leq 1\}$ lying in the first quadrant, having mass density $\rho(x,y)=x$. If the mass of Ω is 1/3, find the y-coordinate of the center of mass of Ω .
 - **A.** 3/7
 - **B.** 3/5
 - C. 1/2
 - **D.** 3/8
 - **E.** 3/4

- 15. Let D be the region bounded by $x = y^2$ and x = 3y + 4. Then the area of D is
 - **A.** $\int_1^{16} \int_{\sqrt{x}}^{(x-4)/3} dy dx$
 - B. $\int_{-1}^{4} \int_{3y+4}^{y^2} dx dy$
 - C. $\int_{1}^{4} \int_{y^{2}}^{3y+4} dxdy$
 - D. $\int_{-1}^{4} \int_{y^2}^{3y+4} dx dy$
 - E. $\int_{1}^{16} \int_{(x-4)/3}^{\sqrt{x}} dy dx$

- 16. Let S be the surface z=6-3y-2x lying above the quarter-plane $\{x>0,y>0\}.$ Then the area of S is
 - **A.** 18
 - **B.** $3\sqrt{14}$
 - C. $3\sqrt{13}$
 - **D.** $6\sqrt{14}$
 - **E**. 39

- 17. Find the work done by the force field $F(x,y) = \langle y+x,y-x \rangle$ on a particle that moves in the xy-plane along the graph of the function $f(x) = x^2$ from (0,0) to (2,4).
 - **A.** 7/3
 - **B.** 8/3
 - C. 17/3
 - D. 22/3
 - E. 27/3

- 18. Use Green's theorem to evaluate $\int_C x^2 dy$ where C is the boundary of the rectangle with vertices $\{(0,0),(2,0),(2,3),(0,3)\}$, oriented conterclockwise.
 - **A.** 4
 - **B.** 6
 - **C**. 8
 - D. 12
 - E. 16

- 19. If S is parameterized by $\mathbf{r}(u,v)=\langle u,v,uv^2\rangle$ then a normal to S at $\langle 1,2,4\rangle$ is
 - A. $\langle 1, 2, 2 \rangle$
 - **B.** (1, 2, 4)
 - **C.** (4, 4, 1)
 - **D.** (1, 2, -2)
 - **E.** $\langle 4, 4, -1 \rangle$

- **20.** Given $\mathbf{F}(x,y,z) = \langle y,z^2 x,x \rangle$, use Stokes' theorem to determine the flux integral $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$, where S is the graph of $z = 9 x^2 y^2$ for $z \geq 0$, oriented by the upward normal.
 - **A.** -18π
 - B. 9π
 - C. 18π
 - **D.** -9π
 - **E.** 0

- **21.** Evaluate the flux integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F}(x,y,z) = \langle x,y,z \rangle$ and S is the part of the paraboloid $z = 1 x^2 y^2$ in the first octant oriented by the downward pointing normal.
 - **A.** $\pi/8$
 - B. $-3\pi/8$
 - C. 3π
 - D. $-\pi$
 - **E.** 0

22. Calculate the flux integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where

$$\mathbf{F}(x, y, z) = 2xy^2 \mathbf{i} + 2yx^2 \mathbf{j} - (x^2 + y^2)z \mathbf{k}$$

- and S is the surface of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = -1 and z = 1, oriented by the outward normal.
 - A. π
 - B. 2π
 - C. 3π
 - $\mathbf{D.} \quad -\pi$
 - **E.** -2π