MA 261

TEST NUMBER 1 FINAL EXAM

December 10, 2007

Name:		<u> </u>	
Student ID Number:			
Lecturer:			
Recitation Instructor:			

Instructions:

- 1. This exam contains 22 problems worth 9 points each.
- 2. Please supply <u>all</u> information requested above and on the mark-sense sheet. Be sure to fill in the "test number" from the top of the page as well.
- 3. Work only in the space provided, or on the backside of the pages. Mark your answers clearly on the scantron. Also circle your choice for each problem in this booklet.
- 4. No books, notes, or calculator, please.

Key: beca adbd adec abcd cdce be

Name:	

1. The curve $\mathbf{r}_1(t) = \langle t^2 - t, t^3 - t, t \rangle$ and the line $\mathbf{r}_2(t) = \langle 0, 0, 1 \rangle + t \langle 2, 1, -1 \rangle$ both intersect at the point (0,0,1). The acute angle θ between the curve and the line at (0,0,1) is

A.
$$\theta = \frac{\pi}{6}$$

$$\mathbf{B.} \ \theta = \frac{\pi}{3}$$

$$\mathbf{C.} \ \theta = \frac{\pi}{4}$$

$$\mathbf{D.} \ \theta = \frac{\pi}{2}$$

$$E. \ \theta = \cos^{-1}\left(-\frac{4}{\sqrt{18}}\right)$$

2. If the acceleration of an object is $\mathbf{a} = (3t^2 + 2t)\mathbf{i} + 3\mathbf{j}$ and its initial velocity is $\mathbf{v}(0) = \mathbf{i} + \mathbf{j}$, what is its speed at t = 1?

A.
$$\sqrt{2}$$

B.
$$\sqrt{13}$$

C.
$$2\sqrt{13}$$

Name:	

3. The directional derivative of $f(x,y) = x^2 - y^4 + 1$ at (1,1) in the direction from (1,1) to (2,0) is

A.
$$\frac{2}{\sqrt{2}}$$

B.
$$\frac{4}{\sqrt{2}}$$

C.
$$\frac{6}{\sqrt{2}}$$

D.
$$\frac{8}{\sqrt{2}}$$

E.
$$\sqrt{20}$$

4. Let w = f(u, v) where $\frac{\partial f}{\partial u} = 2ve^{2u}$ and $\frac{\partial f}{\partial v} = e^{2u}$. If $w(x, y) = f(x^2 - y^2, 3y)$, then at the point $(x_0, y_0) = (1, 1)$, we have $\frac{\partial w}{\partial y} = \frac{\partial w}{\partial y} = \frac{\partial w}{\partial y}$

D.
$$-e^2$$

E.
$$-3e^2$$

Name:	

5. An equation of the tangent plane to the surface $2x^2 + y^2 + ze^z = 3$ at the point (1,-1,0) is

A.
$$z = -4x + 2y + 6$$

B.
$$z = -4x - 2y + 6$$

C.
$$z = 4x + 2y - 6$$

D.
$$z = -4x - 2y - 6$$

E.
$$z = 4x - y + 6$$

6. If the function u is defined implicitly as a function of x and y by the equation

$$x^3y + xu^2 = 4\sin u + 8,$$

then
$$\frac{\partial u}{\partial x} =$$

$$\mathbf{A.} \quad -\left(\frac{x^3y+u^2}{2xu-4\sin u}\right)$$

$$\mathbf{B.} - \left(\frac{2xu}{2xu - 4\cos u}\right)$$

$$\mathbf{C.} \qquad \left(\frac{x^3y + 2u}{2xu - 4\cos u}\right)$$

$$\mathbf{D.} - \left(\frac{3x^2y + u^2}{2xu - 4\cos u}\right)$$

$$\mathbf{E.} - \left(\frac{3x^2y + u^2}{2xu}\right)$$

Name:	
	 _

7. Given that the function g has continuous first and second partials and given the table of values below, classify the critical points (1,1) and (3,0) of g:

(x,y)	$g_x(x,y)$	$g_y(x,y)$	$g_{xx}(x,y)$	$g_{yy}(x,y)$	$\overline{g_{xy}}(x,y)$
(1,1)	0	0	-2	-2	-1
(3, 0)	0	0	0	-6	-3

- A. A local minimum at (1,1) and a saddle point at (3,0)
- **B.** A local maximum at (1,1) and a saddle point at (3,0)
- C. A local maximum at (1,1) and a local minimum at (3,0)
- **D.** A local minimum at (1,1) and a local maximum at (3,0)
- E. A saddle point at (1,1) and a local minimum at (3,0)

Name:		

8. Find the minimum value of

$$f(x, y, z) = 4x^2 + y^2 + z^2$$

on the surface xyz = 4.

- **A.** 6
- **B**. 9
- **C.** 10
- **D.** 12
- **E.** 16

Name:	~		
		_	

9. Let E be the solid that lies within the cylinder $x^2 + y^2 = 1$, above the plane z = 0, and below the paraboloid $z = 4x^2 + 4y^2$. Express

$$\iiint_E x^2 dv$$

as an iterated integral in cylindrical coordinates.

A.
$$\int_0^{2\pi} \int_0^1 \int_0^{4r^2} r^3 \cos^2 \theta dz dr d\theta$$

$$\mathbf{B.} \quad \int_0^{2\pi} \int_0^4 \int_0^{2r} r^3 \cos^2 \theta dz dr d\theta$$

C.
$$\int_0^{2\pi} \int_0^1 \int_0^{4r^2} r^2 \cos^2 \theta dz dr d\theta$$

$$\mathbf{D.} \quad \int_0^{2\pi} \int_0^2 \int_0^{4r} r^3 \cos^2 \theta dz dr d\theta$$

$$\mathbf{E.} \quad \int_0^{2\pi} \int_0^1 \int_0^4 r^3 \cos^2 \theta dz dr d\theta$$

10. Find the values a, b which give the correct change in order of integration

$$\int_{5}^{9} \int_{-\sqrt{9-y}}^{\sqrt{9-y}} f(x,y) dx dy = \int_{-2}^{2} \int_{a}^{b} f(x,y) dy dx$$

A.
$$a = 0$$
 $b = \sqrt{9 - x^2}$

B.
$$a = 0$$
 $b = 9 - x^2$

C.
$$a = 9 - x^2$$
 $b = 9$

D.
$$a = 5$$
, $b = 9 - x^2$

E.
$$a = \sqrt{9 - x^2}$$
 $b = 9$

Name:	

- 11. Find the volume of the solid below the plane z = x and above the triangle with vertices (0,0,0) (0,3,0) and (3,3,0).
 - **A.** 1/2
 - **B.** 2/3
 - C. 14/3
 - **D.** 3/2
 - **E.** 9/2

12. Find the surface area of the portion of the paraboloid

$$z = 16 - x^2 - y^2$$

that lies above the disk $x^2 + y^2 \le 2$.

- **A.** $\pi/2$
- **B.** $7\pi/6$
- C. $13\pi/3$
- **D.** $2\pi/3$
- \mathbf{E} . π

Name:	-		

- 13. A lamina in the shape of the rectangle $0 \le x \le \pi/2$, $0 \le y \le 1$, has density $f(x,y) = x\cos(xy)$. Find the mass of the plate.
 - **A.** 1
 - $\mathbf{B}. \ \pi$
 - C. 1/2
 - **D.** $3\pi 5$
 - E. $\pi/4$

14. A plane contains the points $P_1(0,1,0)$, $P_2(0,3,3)$, $P_3(1,1,4)$. One vector normal to the plane is:

A.
$$\mathbf{i} - 2\mathbf{j} + \mathbf{k}$$

B.
$$8i + 3j - 2k$$

C.
$$2j + 3k$$

D.
$$i + 2j + 7k$$

E.
$$4i - 3j + 2k$$

Name:	
	$\overline{}$

15. Determine a so that the line

$$x = at + 3$$

$$y=2t-5$$

$$z=4t-1$$

is parallel to the plane 2x + 3y - 5z = 14.

A.
$$a = -4$$

B.
$$a = 3$$

C.
$$a = 7$$

D.
$$a = -5$$

E.
$$a = -14$$

16. In spherical coordinates, the surface

$$\rho^2(1-\cos^2\phi)=16$$

is a:

- A. half cone
- B. plane
- C. sphere
- \mathbf{D} . cylinder
- E. hyperboloid

* T			
Name:			
1.01110.			

- 17. The traces of the surface $z^2 + 1 = x^2 y^2$ in the planes z = k are:
 - A. hyperbolas and lines
 - B. parabolas only
 - C. hyperbolas only
 - D. parabolas and lines
 - **E.** hyperbolas and the point (0,0) only

18. The arclength of the curve given by $\mathbf{r}(t) = \langle \sqrt{2} t, e^t, e^{-t} \rangle$ for $0 \le t \le 2$ is:

A.
$$e^6 - e^{-2}$$

B.
$$e^6 - e^{-1}$$

C.
$$e^4 - e^{-2}$$

D.
$$e^2 - e^{-2}$$

E.
$$2 + e^4 + e^{-4}$$

Name:		

19. Let C be the curve $y = \frac{1}{3} x^3$, $0 \le x \le 1$. Compute $\int_C 12y ds$.

A.
$$8(2^{3/2}-1)$$

B.
$$12(2^{3/2}-1)$$

C.
$$\frac{2}{3}(2^{3/2}-1)$$

D.
$$\frac{3}{2} (2^{3/2} - 1)$$

E.
$$2(2^{3/2}-1)$$

20. Let C be the segment from (0,2) to (2,5). Compute

$$\int_C \ \frac{1}{2} \ xydx - xdy$$

- **A.** 2
- **B.** $\frac{3}{2}$
- **C.** $\frac{5}{2}$
- **D.** $\frac{4}{3}$
- **E.** 1 ..

Name:		

21. Let C be the closed curve pictured that is the boundary of the region in the first quadrant satisfying $1 \le x^2 + y^2 \le 4$. Compute

$$\int_C (x - x^2 y) dx + x y^2 dy$$

- $\mathbf{A.} \quad \frac{7\pi}{6}$
- **B.** $\frac{15\pi}{8}$
- C. $\frac{9\pi}{4}$
- **D.** $\frac{11\pi}{2}$
- $\mathbf{E.} \quad \frac{7\pi}{2}$

Name:	

22. Let S be the surface described by $\mathbf{r}(s,t)=(2s-t,s+t,s-t)$ for $0\leq s\leq 2,\ 0\leq t\leq 1.$ Compute

$$\int \int_{S} (y+z)dS$$

- **A.** $2\sqrt{14}$
- **B.** $\sqrt{14}$
- **C.** 2
- **D.** 4
- **E.** $4\sqrt{14}$