Name	
Student ID	 _
Recitation Instructor	
Recitation Time	

Directions

- 1. Write your name, student ID number, recitation instructor's name and recitation time in the spaces provided above, and also fill in the information on the answer sheet.
- 2. Circle the letter of your answer for each question in the test papers and also on the answer sheet.
- 3. The exam has 12 problems. Problems 1–4 are worth 9 points each. All others are worth 8 points each.
- 4. No books, notes or calculators may be used in this exam.

1. Given $x^2 + y^2 + \sin(xy^2) = 1$. Find $\frac{dy}{dx}$ at (0,1).

- A. 0
- B. $\frac{1}{2}$
- C. 2
- D. $-\frac{1}{2}$
- E. -2

- 2. Find the directional derivative of $f(x,y) = \tan(x+2y)$ at the point $\left(0,\frac{\pi}{6}\right)$ in direction of (-3,4).
 - A. 20
 - B. $\frac{4}{5}$
 - C. 4
 - D. 16
 - E. -20

- 3. Critical points of $f(x,y) = x^3 + y^3 6xy$ are
 - A. a saddle point and a local maximum
 - B. a saddle point and a local minimum
 - C. a local maximum and a local minimum
 - D. two saddle points and a local maximum
 - E. two saddle points and a local minimum

4. Use Lagrange multipliers to find the point (x, y, z) at which $x^2 + y^2 + z^2$ is minimal subject to x + 2y + 3z = 1.

A.
$$\left(\frac{1}{7}, \frac{1}{14}, \frac{2}{7}\right)$$

B.
$$\left(\frac{1}{14}, \frac{1}{7}, \frac{3}{14}\right)$$

C.
$$(1,0,0)$$

D.
$$\left(\frac{1}{2}, \frac{1}{4}, 0\right)$$

E.
$$\left(\frac{3}{14}, \frac{1}{7}, \frac{1}{14}\right)$$

5. What is the double integral for the volume of the solid in the first octant bounded by the surfaces $z^2 = x^2 + 2y^2$, x + y = 1.

A.
$$\int_0^1 \int_0^{1-x} (x^2+2y^2)dydx$$

B.
$$\int_0^1 \int_0^{1-x} (x^2+2y^2)^2 dy dx$$

C.
$$\int_0^1 \int_0^{1-y} \sqrt{x^2 + 2y^2} dy dx$$

D.
$$\int_0^1 \int_0^{1+x} \sqrt{x^2 + 2y^2} dy dx$$

E.
$$\int_0^1 \int_0^{1-x} \sqrt{x^2 + 2y^2} dy dx$$

6. Evaluate $\iint_R \frac{yx^2}{1+y^2} dA$, $R = [-3, 3] \times [0, 1]$.

A.
$$\frac{9}{2} \ln 2$$

7. Evaluate $\int_0^1 \int_{\sqrt{y}}^1 \sqrt{x^3 + 1} \, dx dy.$

- A. $\frac{1}{3} \left(2^{\frac{3}{2}} 1\right)$
- B. $\frac{2}{3} \left(2^{\frac{3}{2}} 1\right)$
- C. cannot be evaluated
- $D. \ \frac{2}{3}$
- E. $\frac{2}{9} \left(2^{\frac{3}{2}} 1\right)$

- 8. Evaluate $\iint_R xy \, dx \, dy$ where R is the region in the first quadrant that lies between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$.
 - A. 10
 - B. 10π
 - C. 20
 - D. $\frac{13}{3}$
 - E. $\frac{13}{3}\pi$

- 9. A lamina occupies the region in the first quadrant bounded by $y=x^2$ and y=1. If density $\rho(x,y)=xy$, the x coordinate of center of gravity equals
 - A. $\frac{1}{6}$
 - B. $\frac{1}{2}$
 - C. $\frac{3}{4}$
 - D. $\frac{4}{7}$
 - E. $\frac{2}{21}$
- 10. Find the area of the part of the surface $z = y^2 2x$ that lies above the triangle with vertices $(0,0), (1,1), \text{ and } (\frac{1}{2},1)$.
 - A. $\frac{1}{24} (27 5\sqrt{5})$
 - B. $\frac{1}{48}(27-5\sqrt{5})$
 - C. $\frac{1}{4}$
 - D. $\frac{1}{12} \left(6\sqrt{6} 2\sqrt{2} \right)$
 - E. $\frac{1}{6} \left(6\sqrt{6} 2\sqrt{2} \right)$

- 11. Find the volume of the solid bounded by the surface $y = x^2$, z = 0, and y + z = 1.
 - A. $\frac{3}{5}$
 - B. $\frac{4}{15}$
 - C. $\frac{8}{15}$
 - D. $\frac{2}{3}$
 - E. $\frac{2}{5}$
- 12. Evaluate $\iiint_E z \, dV$ where E lies between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$ in the first octant.
 - A. $\frac{7\pi}{12}$
 - B. $\frac{7\pi}{6}$
 - C. $\frac{7}{12}$
 - D. $\frac{15\pi}{8}$
 - E. $\frac{15\pi}{16}$