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1. Identify the surface defined by x2 − y2 − 4x+ z2 = 4.

A. hyperboloid of one sheet

B. hyperbolic paraboloid

C. hyperboloid of two sheets

D. ellipsoid

E. cone

2. If L is the tangent line to the curve ~r(t) = 〈2t− 1, t2, t2 − 2〉 at (3, 4, 2), find the point
where L intersects the xy-plane.

A. (2, 1, 0)

B. (1, 2, 0)

C. (2,−2, 0)

D. (2, 2, 0)

E. (0, 0, 0)
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3. Let ~v =

∫ 1

0

(
1

2
~ı + 2t3~ + (t− 3t2)~k

)
dt. Compute |~v|.

A. 1

B.
3

2

C.
1

4

D.
1

2

E.

√
3

2

4. Find the area of the triangle with vertices at P (2, 2, 1), Q(1,−1, 2), and R(0, 1,−1).

A.
√

5

B.
3
√

10

2

C.

√
31

2

D. 2
√

5

E.

√
69

2
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5. The level curves of f(x, y) =
√
x2 + 4y2 + 4− x are

A. hyperbolas

B. ellipses

C. parabolas

D. sometimes lines and sometimes ellipses

E. circles

6. Find the length of the curve:

~r(t) = 〈4 sin t, 3t, −4 cos t〉, 0 ≤ t ≤ 1

2
.

A.
8

3
sinh−1

(
3

8

)
B.

8

3
sinh−1

(
3

8

)
+

√
73

8

C. 2.5

D. 5

E. 5π
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7. A particle is moving with acceleration

~a(t) = 〈6, 6t, 0〉.

If at time t = 1, the particle has position ~r(1) = 〈2, 1, 2〉, and, at time t = 0 it has
velocity ~v(0) = 〈0, 0, 1〉, compute |~r(2)|, the magnitude of the position vector at t = 2.

A. 2
√

53

B. 3
√

21

C.
√

194

D.
√

293

E.
√

57

8. If f(x, y) = x sin(xy2), then fxy(π, 1) is equal to

A. 4π

B. −4π

C. 2π

D. −2π

E. 0
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9. Let f(x, y, z) be a function which is differentiable at (1, 1, 1) and

∂f

∂x
(1, 1, 1) = −6,

∂f

∂y
(1, 1, 1) = 2, and

∂f

∂z
(1, 1, 1) = −1.

Let ~γ(t) = 〈x(t), y(t), z(t)〉 be the parametric equation of a differentiable curve in R3

and suppose ~γ(0) = 〈1, 1, 1〉 and
d~γ

dt
(0) = 3~ı − 3~ + ~k. We can conclude that

d

dt
f(~γ(t))

at t = 0 is equal to

A. −25

B. −14

C. −13

D. −11

E. −4

10. Which of the following is an equation for the plane tangent to the surface

z = tan−1(x2 + y2) at the point

(
1√
2
,

1√
2
,
π

4

)
?

Hint: d
du

(tan−1 u) = 1
1+u2

A. x+ y − 1

2
z =
√

2− π

8

B. x+ y − 2z =
√

2− π

2

C. x+ y −
√

2z =
(

1− π

4

)√
2

D. x+ y − z =
√

2− π

4

E. x+ y − 3z =

√
2

3
− 3π

4
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11. The absolute minimum value of f(x, y) = 2 + x2y2 in the region
x2

2
+ y2 ≤ 1 equals 2.

The absolute maximum value of f in this region is

A. 4.5

B. 4

C. 3.5

D. 3

E. 2.5

12. Let z(x, y) be the function implicitly defined as the solution to

x+ y + z + sin(xyz) = 3 +
π

2

that satisfies z(1, 1) =
π

2
. Find zx(1, 1).

A. 1

B. −1

C. 2

D. 0

E.
3

2
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