| Name                  |  |
|-----------------------|--|
| Student ID            |  |
| Recitation Instructor |  |
| Recitation Time       |  |

## Directions

- 1. Write your name, student ID number, recitation instructor's name and recitation time in the spaces provided above.
- 2. Write your name, your student ID number and division and section number of your recitation section on your answer sheet, and fill in the corresponding circles.
- 3. Mark the letter of your answer for each question on the answer sheet as well as in the test papers.
- 4. The exam has 13 problems. Problem 10 is worth 4 points. All others are worth 8 points each.
- 5. No books, notes or calculators may be used in this exam.

- 1. Find a vector perpendicular to both  $\mathbf{a} = \mathbf{i} 3\mathbf{j} + 2\mathbf{k}$  and  $\mathbf{b} = -2\mathbf{i} + \mathbf{j} 5\mathbf{k}$ .
  - A. 11i 12j 2k
  - B. 13i + j 5k
  - C. j+j+k
  - D.  $2\mathbf{i} \mathbf{j} \mathbf{k}$
  - E. 2i 4j + 5k

- 2. Find symmetric equations of the line containing P = (3, 4, 5) with direction vector  $\mathbf{V} = \langle 2, -3, 6 \rangle$ .
  - A.  $x = 3 + \frac{t}{2}$ ,  $y = 4 \frac{t}{3}$ ,  $z = 5 + \frac{t}{6}$
  - B.  $\frac{x-2}{3} = \frac{y+3}{4} = \frac{z-6}{5}$
  - C.  $\frac{x+3}{2} = \frac{y+4}{-3} = \frac{z+5}{6}$
  - D.  $\frac{x-3}{2} = \frac{y-4}{-3} = \frac{z-5}{6}$
  - E.  $\frac{x+2}{3} = \frac{y-3}{4} = \frac{z+6}{5}$

3. Find equation of the plane that contains P=(-1,2,3) and is perpendicular to the vector (2,0,-3).

A. 
$$-x + 2y + 3z = 14$$

B. 
$$2x - 3z = 0$$

C. 
$$\frac{x+1}{2} = \frac{z-3}{-3}$$

D. 
$$\frac{x-1}{2} = \frac{z+3}{-3}$$

E. 
$$2x - 3z = -11$$

4. Convert the equation in cylindrical coordinates  $\frac{1}{r^2}=z\sin2\theta$  to rectangular coordinates.  $(\sin2\theta=2\sin\theta\cos\theta)$ 

A. 
$$x + y = z$$

B. 
$$xyz = \frac{1}{2}$$

C. 
$$(x^2 + y^2)z = 1$$

$$D. \ \frac{xy}{z} = 1$$

E. 
$$x^2y^2z = 1$$

- 5. In spherical coordinates, the surface  $\tan \varphi 1 = 0$  is a
- A. half cone
- B. sphere
- C. right circular cylinder
- D. plane
- E. saddle surface

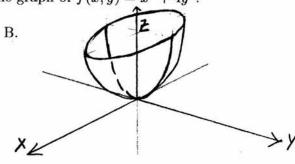
6. Find symmetric equations of the tangent line to  $\mathbf{r}(t) = (t^2 + t)\mathbf{i} + \cos t\mathbf{j} + 2e^t\mathbf{k}$  at the point (0, 1, 2).

A. 
$$x = y = \frac{z}{2}$$

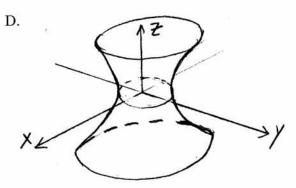
B. 
$$\frac{x}{2} = y - 1 = \frac{z - 2}{2}$$

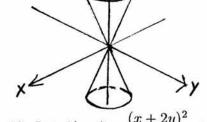
C. 
$$x = \frac{z-2}{2}, y = 1$$

D. 
$$x = z - 2, y = 1$$


$$E. \ x = y = z$$

- 7. Find the length of the helix  $\mathbf{r}(t) = 2t\mathbf{i} + \sin t\mathbf{j} + \cos t\mathbf{k}$  from t = 0 to  $t = \pi$ .
  - A.  $\sqrt{5}$
  - B. 0
  - C.  $\sqrt{5}\pi$
  - D.  $5\pi$
  - E.  $\pi$


- 8. A particle moves in the plane with  $\mathbf{r}(0) = 0$ ,  $\mathbf{r}'(0) = \mathbf{j}$ ,  $\mathbf{r}''(t) = 2\mathbf{i} + 2\mathbf{j}$ . Where is the particle when t = 5?
  - A. (25, 25)
  - B. (30, 30)
  - C. (0,0)
  - D. (30, 25)
  - E. (25, 30)


9. Which of the following surfaces represents the graph of  $f(x,y) = x^2 + 4y^2$ .

A. 12



C. **Z** 





- 10. Let  $f(x,y) = \frac{(x+2y)^2}{x^2+4y^2}$ . Then  $\lim_{(x,y)\to(0,0)} f(x,y) =$
- A. 1
- B.  $\frac{9}{5}$
- C.  $\frac{1}{5}$
- D. limit does not exist
- E. 0

11. Which of the following functions is a solution of the equation  $u_{xx} + u_{yy} = 0$ ?

A. 
$$u = x^2 + y^2$$

B. 
$$u = e^{x-y}$$

C. 
$$u = e^{-x} \cos y - e^{-y} \cos x$$

D. 
$$u = \sin x \cos y$$

E. 
$$u = x^3 + 3xy^2$$

12. Find an equation of the tangent plane to the graph of  $f(x,y) = 3x^2 + 2y^2 + 4x - y + 5$  at the point (-1,1,5).

A. 
$$2x - 3y + z = 0$$

B. 
$$2x - 3y + z = 5$$

C. 
$$2x - 3y - z = 10$$

D. 
$$10x + 3y - z = 10$$

E. 
$$10x - 5y - z = 10$$

- 13. Let  $f(x,y)=2x^2y+xy^3$  and  $x=g(s,t),\ y=h(s,t)$  are functions of s and t. Suppose  $g(1,2)=1,\ h(1,2)=-1$  and  $\frac{\partial g}{\partial t}(1,2)=2,\ \frac{\partial h}{\partial t}(1,2)=1$ . Then at (s,t)=(1,2),  $\frac{\partial f}{\partial t}$  equals
  - A. 0
  - B. -10
  - C. 10
  - D. 5
  - E. -5