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General Exam Policies

(1) Students may not open the exam until instructed to do so.
(2) Students must obey the orders and requests by all proctors,

TAs, and lecturers.
(3) No student may leave in the first 20 min or in the last 10 min

of the exam.
(4) Books, notes, calculators, or any electronic devices are not al-

lowed on the exam, and they should not even be in sight in the
exam room. Students may not look at anybody else’s test, and
may not communicate with anybody else except, if they have a
question, with their TA or lecturer.

(5) After time is called, the students have to put down all writing
instruments and remain in their seats, while the TAs will collect
the scantrons and the exams.

(6) Any violation of these rules and any act of academic dishonesty
may result in severe penalties. Additionally, all violators will
be reported to the Office of the Dean of Students.

I have read and understand the exam rules stated above:

STUDENT NAME:

STUDENT SIGNATURE:
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Problem 1: The angle between the planes given by the equations

x+ y = 2 and x+ y +
√

2z =
√

6

is

A. π
2

B. π
4

C. π
6

D. π

E. π
3

Problem 2: a) Consider the following two curves r1(t) = 〈t, t2, t3〉
and r2(t) = (−1 + 3t, 1 + 3t,−1 + 9t). The curves have

A. 2 intersection points and no points of collision.

B. 1 intersection point, which is a point of collision.

C. 2 intersection points, one of which is a point of collision.

D. 1 intersection point and no points of collision.

E. 2 intersection points which both are points of collision.
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Problem 3: Find the length of the curve given by

~r(t) = 〈2t, 4
√
t, ln t〉

for 1 ≤ t ≤ e.

A. e− 1

B. 2e+ 1

C. e+ 1

D. 2e− 1

E. 4e− 3

Problem 4: A particle is moving with acceleration t~j + ~k. If the
velocity at time t = 1 is ~v(1) = ~i − 1

2
~j, what is the velocity at time

t = 0?

A. ~i−~j − ~k
B. ~i−~j + 2~k

C. ~i− 1
2
~j − ~k

D. ~i+ 1
2
~j − ~k

E. −~i+~j
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Problem 5: The function

f(x, y) =

{
2xy
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

A. is continuous on R2.

B. is not well defined at (0, 0), since it evaluates to 0
0
.

C. has limit 0 at (0, 0) along the diagonal x = y.

D. has limit 2 at (1, 1).

E. is continuous on R2 \ (0, 0).

Problem 6: Consider the function

f(x, y) = 3x2 − 2y2 − 2x+ 3xy

At the point (1, 1, 2).

A. The slope of the tangent line to the curve of intersection of the graph
of f and x = 1 is positive.

B. The gradient of f is 〈−7,−1, 1〉.
C. The slope of the tangent line to the curve of intersection of the graph
of f and y = 1 is positive.

D. The partial derivatives vanish.

E. The tangent plane is z − 2 = 5(x− 1) + 6(y − 2).
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Problem 7: Consider the function

f(x, y, z) = xyz

which of the following is true.

(1) df = xdx+ ydy + zdz
(2) Its linear approximation is the tangent plane.
(3) If ∆x = ∆y = ∆z = 0.2 then the error estimated by using

differentials at (1, 2, 1) is 1
(4) Its gradient is 〈yz, xz, xy〉
(5) Its linear approximation at (1, 1, 1) is L(x, y, z) = x+ y+ z− 2.

A. 1,2,3 are true.

B. 3,4,5 are true.

C. all are true.

D. none is true.

E. only 4 is true.

Problem 8: Consider the function

g(s, t) = f(t sin(
π

2
s), st2)

with f differentiable. Use the table of values to calculate gt(1, 2)

f g fx fy
(1, 2) π 5 3 2π
(2, 4) 5 π 2 4

A. 3 + 8π

B. 15 + 2π2

C. 9

D. 18

E. 2π + 20
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Problem 9: Find the maximum rate of change of the function

f(x, y, z) = x2y − 2yz + z2x

at the point (1, 1,−1).

A.
√

52

B.
√

44

C. 2
√

10

D.
√

34

E. 2
√

34

Problem 10: Find all critical points of the function

f(x, y) = x3 + 2xy − 2y2 − 10x

and classify them.

A. (2,−1), (5
3
, 5
6
) one min, one max.

B. (−1,−2), (5
6
, 5
3
) one min, one saddle.

C. (−2,−1), (5
3
, 5
6
) one min, one saddle.

D. (−1,−2), (5
6
, 5
3
) one max, one saddle.

E. (−2,−1), (5
3
, 5
6
) one max, one saddle.
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