(6 pt) 1. Which vector is perpendicular to the plane containing the points

$$(1,2,-3), (0,1,1), and (-2,0,0)$$
?

A.
$$5\vec{i} - 9\vec{j} - \vec{k}$$

B.
$$5\vec{i} + 9\vec{j} + 5\vec{k}$$

C.
$$10\vec{i} + 6\vec{j} + \vec{k}$$

D.
$$5\vec{i} + 9\vec{j} + \vec{k}$$

E.
$$16\vec{i} - 6\vec{j} - \vec{k}$$

- (6 pt) 2. The traces of the surface $x^2-y^2+z^2=1$ in the planes $x=1,\ y=2,$ and z=3 are respectively
 - A. pair of lines, hyperbola, hyperbola
 - B. pair of lines, circle, hyperbola
 - C. a hyperbola, hyperbola, pair of lines
 - D. pair of lines, hyperbola, circle
 - E. circle, pair of lines, hyperbola

(6 pt) 3. Determine the value of b such that the line with parametric equations

$$x = 2t + 1,$$
 $y = 3t - 1,$ $z = t + 2$

is parallel to the plane

$$x - by + 2bz = 6$$

- A. b = -2
- B. b = -1
- C. b = 0
- D. b = 1
- E. b = 2

(6 pt) 4. The point $(-1, 1, \sqrt{\frac{2}{3}})$ in rectangular coordinates has spherical coordinates (ρ, θ, φ) :

A.
$$(2\sqrt{\frac{2}{3}}, \pi/4, \pi/3)$$

B.
$$(2\sqrt{\frac{2}{3}}, \frac{3\pi}{4}, \pi/3)$$

C.
$$(2\sqrt{\frac{2}{3}}, \frac{\pi}{4}, \pi/6)$$

D.
$$(\sqrt{\frac{2}{3}}, \frac{\pi}{4}, \pi/6)$$

E.
$$(2, \frac{3\pi}{4}, \pi/3)$$

(6pt) 5. Find the point P on the curve

$$\vec{r}(t) = t\vec{i} + t^2\vec{j} + t^3\vec{k}$$

- at which the tangent vector is parallel to the vector (2,4,6). P has coordinates
 - A. (1,1,1)
 - B. (2,4,12)
 - C. (1,2,3)
 - D. (1, 1, -1)
 - E. (0,0,0)

- (7 pt) 6. The curvature k(t) of the curve
 - $ec{r}(t) = rac{t}{\sqrt{2}}ec{i} + \sin \frac{t}{\sqrt{2}}ec{j} + \cos \frac{t}{\sqrt{2}}ec{k}$

is

- A. *t*
- B. 1
- C. t/2
- D. 1/2
- E. $\sqrt{2} t$

(7 pt) 7. The portion of the helix

$$\vec{r}(t) = 2\cos t\vec{i} + 2\sin t\vec{j} + \sqrt{5} t\vec{k}, \ 0 \le t \le \pi/2$$

has length

- A. 3π
- B. 6π
- C. $\frac{3\pi}{2}$
- D. 4π
- E. $3\pi/4$

- (7 pt) 8. A particle travels with velocity $\vec{v}(t) = 2\vec{i} 4t\vec{j} + 3t\vec{k}$. At t = 1 the position vector at the particle is $3\vec{i} + \vec{j} + 5\vec{k}$. What is the position vector of the particle at time t = 0?
 - A. $\vec{i} + 3\vec{j} + 4\vec{k}$
 - B. $\vec{i} + 3\vec{j} + \frac{14}{3}\vec{k}$
 - C. $2\vec{i} 2\vec{j} + \vec{k}$
 - D. $-2\vec{i} + 2\vec{j} \vec{k}$
 - $\text{E. } \vec{i} + 3\vec{j} + \frac{7}{2} \vec{k}$

(7 pt) 9. Find $\frac{\partial f}{\partial x}$ if $f(x,y) = xy\sin(x^2y)$.

- A. $y \sin(x^2 y) + 2x^2 y \cos(x^2 y)$
- B. $y\sin(x^2y)+2x^2y\sin(x^2y)$
- C. $y\sin(x^2y) + 2x^2y^2\cos(x^2y)$
- D. $x\sin(x^2y) + 2x^2y\sin(x^2y)$
- E. $x\cos(x^2y) + 2x^2y^2\cos(x^2y)$

(7 pt) 10. The level curves of $f(x,y) = 3x^2 - y^2$

- A. are always hyperbolas
- B. are always lines
- C. are always points
- D. are sometimes hyperbolas and sometimes pairs of lines
- E. are sometimes hyperbolas and sometimes points

(7 pt) 11. A parameterization of a curve that begins at $2\vec{i}$ when t=0 and travels on the circle $x^2+y^2=4$ in a clockwise direction is:

A.
$$\vec{r}(t) = 2\cos t\vec{i} + 2\sin t\vec{j}$$

B.
$$\vec{r}(t) = -2\cos t\vec{i} + 2\sin t\vec{j}$$

$$C. \vec{r}(t) = 2\cos t\vec{i} - 2\sin t\vec{j}$$

D.
$$\vec{r}(t) = 2\sin t\vec{i} + 2\cos t\vec{j}$$

$$E. \vec{r}(t) = 2\sin t\vec{i} - 2\cos t\vec{j}$$

- (7 pt) 12. Let $x^2 + y^2 + z^2 x y 3z = 58$. Then at (3, 4, -5), $\frac{\partial z}{\partial x} =$
 - A. -1/13
 - B. 6/13
 - C. -5/7
 - D. 5/13
 - E. 1/3

(7 pt) 13. Find
$$\lim_{h\to 0} \frac{e^{x(h+2)^2}-e^{4x}}{h}$$

- A. $2xe^{4x}$
- B. $4xe^{4x}$
- C. 0
- D. does not exist
- E. e^{4x}

(7 pt) 14. Let $f(x,y) = x^2 - 2y^2 + 3x$. In what direction from (1, 2) should we proceed so that the change in f in that direction would increase most rapidly?

- A. toward (6, -6)
- B. toward (0,0)
- C. toward (5, -8)
- D. toward (4, -6)
- E. toward (-4, 10)

(7 pt) 15. Let $z = f(x, y) = 2x^2 + y^3$. Use the total differential for f at $(x_0, y_0) = (1, 2)$ to find dy given dz = -1.2 and dx = 0.3.

- A. dy = 0.2
- B. dy = 0.1
- C. dy = 0
- D. dy = -0.1
- E. dy = -0.2