MA	261
IVIA	_ 4 U1

Exam 1

September 22, 2005

Name:	
tudent ID Number:	
ecturer:	
Recitation Instructor:	

Instructions:

- 1. This exam contains 12 problems worth 8 points.
- 2. Please supply <u>all</u> information requested above and on the mark-sense sheet.
- 3. Work only in the space provided, or on the backside of the pages. Mark your answers clearly on the scantron. Also circle your choice for each problem in this booklet.
- 4. No books, notes, or calculator, please.

Key: DBEB CCAB DAEC

- 1. If M=(0,3,1) and N=(2,3,-1) then a unit vector in the direction of \vec{MN} is:
 - A. $\langle 2, 0, -2 \rangle$
 - B. $\langle 2, 0, 0 \rangle$
 - C. $\langle -2, 0, 2 \rangle$
 - D. $(\frac{2}{\sqrt{8}}, 0, -\frac{2}{\sqrt{8}})$
 - E. $\langle -\frac{2}{\sqrt{8}}, 0, \frac{2}{\sqrt{8}} \rangle$

2. The angle between the vectors $3\vec{i} + \sqrt{3}\vec{k}$ and \vec{k} is:

- A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$ C. $\frac{\pi}{4}$
- D. $\frac{\pi}{2}$
- E. π

- 3. Which of the following statements is true for all three-dimensional vectors \vec{a}, \vec{b} , and \vec{c} , if θ is the angle between \vec{a} and \vec{b} ?
 - (i) $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$
 - (ii) $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{b} \times \vec{c}) \cdot \vec{a}$
 - (iii) $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \cos \theta$
 - (iv) $(\vec{a} \times \vec{b}) \cdot a = 0$

- A. All are true
- B. (i), (ii), and (iii) only
- C. (i), (ii), and (iv) only
- D. (i), (iii) and (iv) only
- E. (ii) and (iv) only

- 4. The equation $\rho = 2\cos\theta\sin\phi$ in spherical coordinates defines a sphere of radius R =
 - A. $\frac{1}{2}$
 - B. 1
 - C. $\frac{1}{4}$
 - D. 2
 - E. 4

5. Find the equation of the plane that contains the points (1,2,1), (2,-1,0) and (3,3,1).

$$A. -x - 2y + 9z = 4$$

B.
$$x + 2y + 7z = 12$$

C.
$$x - 2y + 7z = 4$$

D.
$$x + 2y + z = 6$$

E.
$$-x + 2y + 9z = 12$$

6. Find a vector function $\vec{r}(t)$, $0 \le t \le 2\pi$, that represents the curve of intersection of the cylinder $4x^2 + 4y^2 = 1$ with the plane x + y + z = 2.

A.
$$\vec{r}(t) = 2\cos t\vec{i} + 2\sin t\vec{j} + (2 - 2\cos t - 2\sin t)\vec{k}$$

B.
$$\vec{r}(t) = 2\cos t\vec{i} + 2\sin t\vec{j} + (2 + 2\cos t + 2\sin t)\vec{k}$$

C.
$$\vec{r}(t) = \frac{1}{2}\cos t\vec{i} + \frac{1}{2}\sin t\vec{j} + (2 - \frac{1}{2}\cos t - \frac{1}{2}\sin t)\vec{k}$$

D.
$$\vec{r}(t) = \frac{1}{2}\cos t\vec{i} + \frac{1}{2}\sin t\vec{j} + (2 + \frac{1}{2}\cos t + \frac{1}{2}\sin t)\vec{k}$$

E.
$$\vec{r}(t) = 2\cos t\vec{i} + 2\sin t\vec{j} + (2 - \cos t - \sin t)\vec{k}$$

7. Find parametric equations for the tangent line to the curve

$$\vec{r}(t) = \langle t^2 + 3t + 2, e^t \cos t, \ln(t+1) \rangle$$

at the point (2, 1, 0).

A.
$$x = 2 + 3t$$
 $y = 1 + t$ $z = t$

B.
$$x = 2t+3$$
, $y = e^t(\cos t - \sin t)$, $z = \frac{1}{t+1}$

C.
$$x = 3 + 2t$$
 $y = 1 + t$ $z = 1$

D.
$$x = 3t$$
 $y = 2t$ $z = 1 + t$

E.
$$x = 2 - t$$
 $y = 1 + t$ $z = 3 - 3t$

- 8. Find the arc-length of the curve defined by $\vec{r}(t) = \langle t, \frac{\sqrt{6}}{2} t^2, t^3 \rangle, -1 \le t \le 1.$
 - A. 5
 - B. 4
 - C. 3
 - D. 2
 - E. 6

- 9. A particle starts at the origin with initial velocity $\vec{i} + \vec{j} \vec{k}$. Its acceleration is $\vec{a}(t) = t\vec{i} + \vec{j} + t\vec{k}$. Find its position at t = 1.
 - A. $\frac{1}{6} \vec{i} + \frac{1}{2} \vec{j} + \frac{1}{3} \vec{k}$
 - B. $\frac{7}{6}\vec{i} + \frac{1}{2}\vec{j} \frac{5}{6}\vec{k}$
 - C. $\vec{i} + \vec{j} + \vec{k}$
 - D. $\frac{7}{6}\vec{i} + \frac{3}{2}\vec{j} \frac{5}{6}\vec{k}$
 - $\text{E. } \vec{i} + 2\vec{j} \vec{k}$

- 10. The level surface of $f(x,y,z)=x^2+y^2-z^2$ corresponding to $f(x,y,z)\equiv 1$ intersects the xy-plane in a
 - A. circle
 - B. parabola
 - C. ellipse
 - D. hyperbola
 - E. line

- 11. If $L = \lim_{(x,y,z) \to (0,0,0)} \frac{x + 2y 3z}{\sqrt{x^2 + y^2 + z^2}}$, then
- A. L = 1
- B. L = -2
- C. L = -3
- D. L = 0
- E. the limit does not exist

- 12. If $f(x,y) = \ln(x^2 + 2y^2)$, then the partial derivative f_{xy} equals
- A. $\frac{4xy}{(x^2+2y^2)^2}$
- B. $\frac{4(x^2 y^2)}{(x^2 + 2y^2)^2}$
- C. $\frac{-8xy}{(x^2+2y^2)^2}$
- D. $\frac{-4y}{(x^2+2y^2)^2}$
- E. $\frac{-2x}{(x^2+2y^2)^2}$