MA166 — FINAL EXAM III — SPRING 2019 — MAY 03, 2019 TEST NUMBER 11

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. MARK YOUR TEST NUMBER ON YOUR SCANTRON
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 15 different test pages (including this cover page).
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. The exam has 25 problems and each one is worth 8 points. The maximum possible score is 200 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. If you do not finish your exam in the first 100 minutes, you must wait until the end of the exam period to leave the room.
- 9. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have doubts, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
- 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, given it to your instructor and left the room.
- 5. Do not consult notes or books.
- 6. **Do not handle** phones or cameras, calculators or any electronic device until after you have finished your exam, given it to your instructor and left the room.
- 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
- 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT NAME: _____

STUDENT SIGNATURE: _____

STUDENT ID NUMBER: _____

SECTION NUMBER AND RECITATION INSTRUCTOR:

USEFUL FORMULAS

Trig Formulas:

 $\sin^2 x = \frac{1 - \cos(2x)}{2}, \quad \cos^2 x = \frac{1 + \cos(2x)}{2}, \quad \sec^2 x = 1 + \tan^2 x$

Useful Integrals:

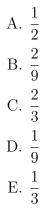
$$\int \sec x \, dx = \ln |\sec x + \tan x| + C \quad \text{and} \quad \int \sqrt{1 + x^2} \, dx = \frac{x}{2}\sqrt{1 + x^2} + \frac{1}{2}\ln(x + \sqrt{1 + x^2}) + C$$

Center of Mass:

$$\overline{x} = \frac{1}{A} \int_{a}^{b} x(f(x) - g(x)) \, dx$$
 and $\overline{y} = \frac{1}{A} \int_{a}^{b} \frac{1}{2} [(f(x))^{2} - (g(x))^{2}] \, dx$

Arc Length, Surface Area and Volume:

Arc Length: $L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$ Surface area: $S = 2\pi \int_{a}^{b} f(x)\sqrt{1 + (f'(x))^{2}} dx$ or $S = 2\pi \int_{a}^{b} x\sqrt{1 + (f'(x))^{2}} dx$ Volume by the washer method: $V = \pi \int_{a}^{b} (R^{2}(x) - r^{2}(x)) dx$; R(x) and r(x) are the longer and shorter radii of the washer Volume by cylindrical shells: $V = 2\pi \int_{a}^{b} xf(x) dx$


Maclaurin Series:

The geometric series:
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
, provided $|x| < 1$
Logarithm: $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$, provided $|x| < 1$
The exponential function: $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for all x
Sine: $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ for all x
Cosine: $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ for all x

1. Find the angle (in radians) between the vectors $\mathbf{u} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$.

A.
$$\cos^{-1}(\frac{1}{6})$$

B. $\cos^{-1}(\frac{1}{3})$
C. $\cos^{-1}(-\frac{1}{3})$
D. $\cos^{-1}(-\frac{1}{6})$
E. $\cos^{-1}(\frac{2}{3})$

2. Find the length of the projection $\mathbf{u} = \mathbf{i} + \mathbf{j} - \mathbf{k}$ onto $\mathbf{v} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$.

3. Find the area of the region enclosed by the curves $y = x^2 - 1$ and $y = -x^2 + 7$.

A.
$$\frac{16}{3}$$

B. $\frac{64}{3}$
C. $\frac{32}{3}$
D. $\frac{32}{5}$
E. $\frac{64}{7}$

4. Find the volume of the solid obtained by rotating the region bounded by y = 2x and $y = x^2$ about the x-axis.

A.
$$\frac{32}{15}\pi$$

B. $\frac{2}{5}\pi$
C. $\frac{64}{15}\pi$
D. $\frac{3}{5}\pi$
E. $\frac{16}{15}\pi$

- 5. Find the volume of the solid obtained by rotating the region of the first quadrant bounded by $y = 1 + x^2$, x = 0, x = 1 and y = 0 about the y-axis.
 - A. π B. 2π C. $\frac{3\pi}{2}$ D. $\frac{\pi}{4}$ E. $\frac{2\pi}{3}$

6. Find the length of the curve $y = \frac{2}{3}x^{\frac{3}{2}}$ for $0 \le x \le 1$.

A.
$$\frac{2}{3}(2\sqrt{2}-1)$$

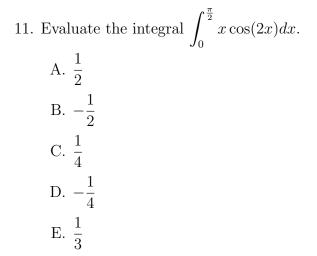
B. $\frac{2}{3}(2\sqrt{2}+1)$
C. $\frac{3}{4}(\sqrt{3}-1)$
D. $\frac{2}{3}(\sqrt{2}-1)$
E. $\frac{2}{3}(2\sqrt{3}-1)$

7. Find the area of the surface obtained by rotating $y = 1 + \frac{1}{2}x^2$ for $0 \le x \le 1$ about the y-axis

A.
$$\frac{2\pi}{3}(2\sqrt{3}-1)$$

B. $\frac{2\pi}{3}(\sqrt{5}-1)$
C. $\frac{2\pi}{3}(\sqrt{3}-1)$
D. $\frac{2\pi}{3}(\sqrt{2}-1)$
E. $\frac{2\pi}{3}(2\sqrt{2}-1)$

8. Let T be the trapezoid in the first quadrant bounded below by y = 0 and $0 \le x \le 2$, and on the left by x = 0 and $0 \le y \le 1$. For $0 \le x \le 1$, T is bounded from above by y = 1, and for $1 \le x \le 2$, T is bounded from above by the line x + y = 2. Find the x-coordinate of its center of mass.


A.
$$\frac{3}{4}$$

B. $\frac{8}{9}$
C. $\frac{7}{9}$
D. $\frac{7}{3}$
E. $\frac{9}{8}$

9.	Evaluate the integ	ral $\int_0^{\frac{\pi}{2}} (c d c d c)$	$(\cos x)^3 dx$
----	--------------------	--	-----------------

A. $\frac{3}{4}$ B. $\frac{2}{3}$ C. $\frac{1}{5}$ D. $\frac{3}{2}$ E. $\frac{5}{8}$

10. Evaluate the integral $\int_0^{\frac{\pi}{3}} (\tan x)^3 (\sec x)^3 dx$

A. $\frac{58}{15}$ B. $\frac{48}{15}$ C. $\frac{64}{15}$ D. $\frac{32}{15}$ E. $\frac{82}{15}$

12. A force of 5 lb. is required to stretch a spring $\frac{1}{3}$ ft. beyond its natural length. How much work is required to stretch the spring 2ft. beyond its natural length?

- A. 10 ft-lbs.
- B. 15 ft-lbs.
- C. 20 ft-lbs.
- D. 25 ft-lbs.
- E. 30 ft-lbs.

13. Evaluate the integral $\int_0^1 \frac{1}{x^2 + 4x + 3} dx$.

A.
$$\frac{1}{2} \ln 3$$

B. $\frac{1}{2} \ln(\frac{3}{4})$
C. $\frac{1}{2} \ln(\frac{2}{3})$
D. $\frac{1}{2} \ln(\frac{8}{3})$
E. $\frac{1}{2} \ln(\frac{3}{2})$

14. Evaluate the integral
$$\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{dx}{(4x^2+1)^{\frac{3}{2}}}.$$

A. $\frac{1}{4}(\sqrt{3}-\sqrt{2})$
B. $\frac{1}{4}(\sqrt{3}+\sqrt{2})$
C. $\frac{1}{4}(2-\sqrt{3})$
D. $\frac{1}{4}(\sqrt{3}-1)$
E. $\frac{1}{4}(\sqrt{2}-1)$

15. If
$$\frac{1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{1+x^2}$$
, then $A + B + C$ is equal to:
A. 2
B. 1
C. $\frac{3}{2}$
D. 2
E. 0

16. Evaluate the improper integral $\int_0^\infty x e^{-x} dx$.

A. 1

B. $\frac{1}{4}$ C. $\frac{1}{2}$ D. $\frac{1}{3}$

E. The integral is divergent.

17. Compute the limit $\lim_{n \to \infty} \left(\sqrt{n^4 + n^3 + n^2} - \sqrt{n^4 + n^3 + 2n^2 + 1} \right).$

A. 0

- B. 1
- C. -1D. $\frac{1}{2}$
- E. $-\frac{1}{2}$

18. Find all values of p for which $\sum_{n=1}^{\infty} \frac{1}{(n^3 + n)^p}$ converges.

- A. p > 1/3
- B. p > 1
- C. $p \ge 1/3$
- D. $p \ge 1$
- E. p < 1/3

19. Which of the following series converge conditionally?

(i)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$$

(ii) $\sum_{n=2}^{\infty} (-1)^n \frac{1}{n(\ln(n))^2}$
(iii) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{2^n}$
A. (i) and (ii).

- B. (i) only.
- C. (i) and (iii).
- D. (ii) and (iii).
- E. (i), (ii), and (iii).

20. Find the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{n}{3^n} (x-1)^n$.

- A. $-2 \le x < 4$
- B. $-2 < x \le 4$
- C. $-1 \le x < 3$
- D. -2 < x < 4
- E. -1 < x < 3

21. Use one the formulas given on page 2 of the exam and the alternating series estimation theorem to compute $\int_0^{0.1} \ln(1+x) dx$ with an error less than 10^{-4} .

A.
$$\frac{1}{200} - \frac{1}{6000}$$

B. $\frac{1}{300} - \frac{1}{6000}$
C. $\frac{1}{100} - \frac{1}{2000}$
D. $\frac{1}{500} - \frac{1}{5000}$
E. $\frac{1}{200} - \frac{1}{8000}$

22. Let
$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^{2n}}{6n^2}$$
. Find $f^{(10)}(3)$, the tenth derivative of f at 3.
A. $f^{(10)}(3) = (10)!$
B. $f^{(10)}(3) = -(10)!$
C. $f^{(10)}(3) = -\frac{(10)!}{150}$
D. $f^{(10)}(3) = \frac{(10)!}{250}$
E. $f^{(10)}(3) = \frac{(10)!}{500}$

23. The Taylor series of the function $f(x) = \frac{1}{x+5}$ centered at 2 is equal to

A.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{5^{n+1}} (x-2)^n$$

B.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} (x-2)^n$$

C.
$$\sum_{n=0}^{\infty} \frac{1}{5^{n+1}} (x-2)^n$$

D.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{7^{n+1}} (x-2)^n$$

E.
$$\sum_{n=0}^{\infty} \frac{1}{7^{n+1}} (x-2)^n$$

24. Find the slope of the tangent line at the point (2,0), for the curve parameterized by $x = 2t^2, y = t^3 - t, t > 0.$

A.
$$-\frac{1}{3}$$

B. $-\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$
E. $\frac{1}{2}$

25. Let $z = 1 + \sqrt{3}$ i. Find z^6 .

A.
$$z^{6} = 64$$

B. $z^{6} = -64$
C. $z^{6} = 64(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i)$
D. $z^{6} = 64(\frac{1}{2} + \frac{\sqrt{3}}{2}i)$
E. $z^{6} = 64(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i)$