MA166 — FINAL EXAM — FALL 2018 — DECEMBER 12, 2018 TEST NUMBER 11

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. MARK YOUR TEST NUMBER ON YOUR SCANTRON
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 15 different test pages (including this cover page).
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. The exam has 25 problems and each one is worth 8 points. The maximum possible score is 200 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. If you do not finish your exam in the first 40 minutes, you must wait until the end of the exam period to leave the room.
- 9. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have doubts, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
- 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, given it to your instructor and left the room.
- 5. Do not consult notes or books.
- 6. **Do not handle** phones or cameras, calculators or any electronic device until after you have finished your exam, given it to your instructor and left the room.
- 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
- 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT NAME: _____

STUDENT SIGNATURE: _____

STUDENT ID NUMBER: _____

SECTION NUMBER AND RECITATION INSTRUCTOR:

USEFUL FORMULAS

Trig Formulas:

$$\sin^2 x = \frac{1 - \cos(2x)}{2}, \quad \cos^2 x = \frac{1 + \cos(2x)}{2}, \quad \sec^2 x = 1 + \tan^2 x$$

Useful Integrals:

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C \quad \text{and} \quad \int \sqrt{1 + x^2} \, dx = \frac{x}{2}\sqrt{1 + x^2} + \frac{1}{2}\ln(x + \sqrt{1 + x^2}) + C$$

Center of Mass:

$$\overline{x} = \frac{1}{A} \int_{a}^{b} x(f(x) - g(x)) \, dx$$
 and $\overline{y} = \frac{1}{A} \int_{a}^{b} \frac{1}{2} [(f(x))^{2} - (g(x))^{2}] \, dx$

Arc Length, Surface Area and Volume:

Arc Length: $L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$ Surface area: $S = 2\pi \int_{a}^{b} f(x)\sqrt{1 + (f'(x))^{2}} dx$ or $S = 2\pi \int_{a}^{b} x\sqrt{1 + (f'(x))^{2}} dx$ Volume by the washer method: $V = \pi \int_{a}^{b} (R^{2}(x) - r^{2}(x)) dx$; R(x) and r(x) are the longer and shorter radii of the washer Volume by cylindrical shells: $V = 2\pi \int_{a}^{b} xf(x) dx$

Maclaurin Series:

The geometric series: $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, provided |x| < 1The exponential function: $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for all xSine: $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ for all xCosine: $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ for all x

- **1.** Find the angle (in radians) between the vectors $\vec{u} = \langle 1, 1, 0 \rangle$ and $\vec{v} = \langle 0, 1, 1 \rangle$.
 - A. $\pi/2$
 - B. $\pi/3$
 - C. $\pi/4$
 - D. 0
 - E. $\pi/6$

- **2.** Find the area of the triangle with vertices P(1, 1, 0), Q(2, 1, 1) and R(3, 1, 0).
 - A. 2 B. $\frac{1}{2}$ C. 1 D. $\frac{1}{3}$ E. $\frac{11}{6}$

- **3.** The area of the region bounded by the curves y = 3x and $y = x^2$. is
 - A. $\frac{4}{3}$ B. $\frac{2}{3}$ C. $\frac{8}{3}$ D. $\frac{5}{6}$ E. $\frac{9}{2}$

4. Find the volume of the solid obtained by rotating the region of the first quadrant bounded by the curves y = x and $y = x^3$ about the x-axis.

A.
$$\frac{5\pi}{6}$$

B.
$$\frac{4\pi}{3}$$

C.
$$\frac{4\pi}{21}$$

D.
$$\frac{8\pi}{21}$$

E.
$$\frac{4\pi}{15}$$

- 5. Find the volume of the solid obtained by rotating the region of the first quadrant bounded by $y = x^2 - x^3$ and y = 0 about the y-axis.
 - A. $\frac{\pi}{20}$ B. $\frac{\pi}{40}$

 - C. $\frac{\pi}{15}$

 - D. $\frac{\pi}{10}$
 - E. $\frac{\pi}{5}$

6. A force of 15 Newtons stretches a spring from its natural length of 5cm to 20cm. Find the total work done by stretching the spring from 25cm to 35cm.

8. Compute the integral
$$\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{\sqrt{1-x^2}} dx$$

A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{8}$
D. $\frac{\pi}{3}$
E. $\frac{\pi}{6}$

9. Compute the integral
$$\int_{1}^{2} \frac{3}{x^{2} + 5x + 4} dx$$

A. $\ln \frac{5}{4}$
B. $\ln \frac{3}{5}$
C. $\ln \frac{9}{4}$
D. $\ln \frac{5}{3}$
E. $\ln \frac{11}{15}$

10. What can be said about the improper integral $\int_2^4 \frac{1}{\sqrt{x-2}} dx$?

A. It diverges

- B. It converges and is equal to $\sqrt{2}$
- C. It converges and is equal to 1
- D. It converges and is equal to $\frac{1}{\sqrt{2}}$
- E. It converges and is equal to $2\sqrt{2}$

- 11. Find the arc length of the curve $y = -\ln \cos x$ with $0 \le x \le \frac{\pi}{4}$. (Use one of the integrals given on page 2)
 - A. $\ln(1 + 2\sqrt{2})$ B. $\ln(2 + \sqrt{2})$ C. $\ln(1 + \sqrt{2})$ D. $1 + \ln(1 + \sqrt{2})$ E. $\frac{2}{3} + \ln(2 + \sqrt{2})$

12. After one makes a suitable substitution, the exact area of the surface obtained by rotating the curve $y = \cos x$, $0 \le x \le \frac{\pi}{2}$, about the x-axis is given by the following integral (the formula for the surface area is given on page 2 of the exam.)

A.
$$2\pi \int_{0}^{1} \sqrt{1+u^{2}} du$$

B. $2\pi \int_{0}^{1} u\sqrt{1+u^{2}} du$
C. $2\pi \int_{0}^{1} u^{2}\sqrt{1+u^{2}} du$
D. $2\pi \int_{0}^{1} u^{2}\sqrt{1+u^{4}} du$
E. $2\pi \int_{0}^{1} \sqrt{1+u} du$

13. The area of the region of the first quadrant bounded by $y = x^3$ and y = 1 is equal to $\frac{3}{4}$. Find its center of mass (formulas for the center of mass can be found on page 2).

14. Compute the following $\lim_{n \to \infty} \left(\frac{3n^2 - 6n + 8}{n - 1} - 3n \right)$ A. 2 B. -2 C. 3 D. -3 E. 0

15. The quantity $(\cos 2x) \sum_{n=1}^{\infty} (\tan x)^{2n}$, for $0 \le x < \frac{\pi}{4}$ is equal to:

A. $\sin^2 x$

- B. $\sin x (\sin x + \cos x)$
- C. $\sin^2 x \cos^2 x$
- D. $\tan^2 x$

E. $\sin 2x$

16. The series
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\frac{4}{3}}}$$

A. converges by the integral test
B. diverges by the integral test
C. diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$
D. converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^2}$
E. diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^2}$

17. What can we say about the series

$$I)\sum_{n=2}^{\infty} \frac{e^{\frac{1}{n}}}{n}, \quad II)\sum_{n=2}^{\infty} (\frac{3}{2} + e^{-n})^n \text{ and } III)\sum_{n=1}^{\infty} \cos^2(\frac{1}{n})?$$

- A. I, II and III diverge
- B. I and III diverge, but II converges
- C. I, II and III converge
- D. I and II converge, but III diverges
- E. I diverges, but II and III converge

18. Let a_n be a sequence such that a₁ = 2 and a_{n+1}/a_n = 2n+1/n+5 and let b_n be another sequence such that lim_{n→∞} |b_n|/|a_n| = 3. We can conclude that:
A. ∑_{n=1}[∞] a_n and ∑_{n=1}[∞] b_n converge absolutely
B. ∑_{n=1}[∞] a_n and ∑_{n=1}[∞] b_n diverge
C. ∑_{n=1}[∞] a_n converges absolutely but we cannot say anything about the convergence of ∑_{n=1}[∞] b_n
D. ∑_{n=1}[∞] a_n and ∑_{n=1}[∞] b_n converge conditionally
E. ∑_{n=1}[∞] a_n converges absolutely and ∑_{n=1}[∞] b_n diverges

- 19. Consider S = ∑_{m=1}[∞] (-1)^{m-1} 1/m⁴ and its partial sum S_n = ∑_{m=1}ⁿ (-1)^{m-1} 1/m⁴. According to the alternating series estimation theorem, what is the smallest n such that |S S_n| < 5⁴ × 10⁻¹²?
 A. n = 250
 B. n = 200
 C. n = 199
 - D. n = 260
 - E. n = 249

20. The interval of convergence of the series $\sum_{n=1}^{\infty} (-1)^n \frac{(x-3)^n}{10n+5}$ is

- A. (2, 4)
- B. [2,4)
- C. [2, 4]
- D. (2, 4]
- E. [1, 2]

21. Let $f(x) = \cos(x^3)$. Then $f^{(12)}(0)$ (the twelvth derivative of $\cos(x^3)$ at x = 0) is equal to: (the Maclaurin series for the $\cos x$ is given on page 2)

A.
$$f^{(12)}(0) = -\frac{12!}{10!}$$

B. $f^{(12)}(0) = \frac{12!}{10!}$
C. $f^{(12)}(0) = -\frac{12!}{4!}$
D. $f^{(12)}(0) = \frac{12!}{8!}$
E. $f^{(12)}(0) = \frac{12!}{4!}$

22. Which of the following series is equal to $\int_0^1 \frac{\sin x}{x} dx$? (the Maclaurin series for the sin x is given on page 2)

A.
$$\sum_{n=0}^{\infty} (-1)^n \frac{2}{(2n+1)(2n+1)!}$$

B.
$$\sum_{n=0}^{\infty} (-1)^n \frac{2}{(4n+1)(2n+1)!}$$

C.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(4n+1)(2n+1)!}$$

D.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)(2n+1)!}$$

E.
$$\sum_{n=0}^{\infty} (-1)^n \frac{2}{(8n+1)(2n+1)!}$$

23.	Given $x(t) = t^3 + 1$ and $y(t) = t^2 - 1$, then	$\frac{d^2y}{dx^2}$ for $t = 1$ is equal to
	A. 1	
	B. $\frac{2}{3}$	
	C. $-\frac{2}{3}$	
	D. $-\frac{2}{9}$	
	E. $\frac{2}{9}$.	

24. The Cartesian equation of the polar equation $r = 2\cos\theta + 4\sin\theta$ is

A.
$$x^2 + (y-2)^2 = 4$$

- B. $(x-1)^2 + (y-2)^2 = 5$
- C. $(x+2)^2 + y^2 = 4$
- D. $(x-1)^2 + (y+2)^2 = 5$
- E. $x^2 + (y+2)^2 = 4$

25. Write the complex number $z = -1 + i\sqrt{3}$ in polar form with argument in $[0, 2\pi)$.

A. $z = 2e^{i\frac{3\pi}{4}}$ B. $z = 2e^{i\frac{5\pi}{4}}$ C. $z = 2e^{i\frac{2\pi}{3}}$ D. $z = 2e^{i\frac{\pi}{3}}$ E. $z = 2e^{i\frac{4\pi}{3}}$