MA 16600 FINAL EXAM INSTRUCTIONS VERSION 01 December 15, 2016

Your name	Your TA's name
Student ID #	Section $\#$ and recitation time

- 1. You must use a $\underline{\#2 \text{ pencil}}$ on the scantron sheet (answer sheet).
- 2. Check that the cover of your exam booklet is GREEN and that it has VERSION 01 on the top. Write $\underline{01}$ in the TEST/QUIZ NUMBER boxes and blacken in the appropriate spaces below.
- **3.** On the scantron sheet, fill in your TA's name (NOT the lecturer's name) and the course number.
- 4. Fill in your <u>NAME</u> and <u>PURDUE ID NUMBER</u>, and blacken in the appropriate spaces.
- 5. Fill in the four-digit <u>SECTION NUMBER</u>.
- 6. Sign the scantron sheet.
- 7. Write down YOUR NAME and TA's NAME <u>on the exam booklet</u>.
- 8. There are 20 questions, each worth 10 points. Blacken your choice of the correct answer in the spaces provided for questions 1–20. Do all your work on the question sheets. <u>Turn in both the scantron sheets and the question sheets when you are finished</u>.
- 9. <u>Show your work</u> on the question sheets. Although no partial credit will be given, any disputes about grades or grading will be settled by examining your written work on the question sheets.
- 10. <u>NO calculators, electronic device, books, or papers are allowed.</u> Use the back of the test pages for scrap paper.
- 11. After you finish the exam, <u>turn in BOTH the scantron sheet and the exam booklet</u>.
- 12. If you finish the exam before 8:55, you may leave the room after turning in the scantron sheets and the exam booklets. If you don't finish before 8:55, you should REMAIN SEATED until your TA comes and collects your scantron sheets and exam booklets.

Questions

- 1. Find the work done by the force $\vec{F} = \langle 8, -6, 3 \rangle$ that moves an object from the point (0, 10, 8) to the point (3, 11, 14).
 - A. -36
 - B. −24
 - C. 0
 - D. 24
 - E. 36

2. The area of a triangle with the vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) is

A.
$$\frac{\sqrt{2}}{2}$$

B.
$$\frac{\sqrt{3}}{2}$$

C.
$$\frac{\sqrt{6}}{2}$$

D.
$$\sqrt{2}$$

E.
$$\sqrt{3}$$

- **3.** Projection of the vector $\langle 5, 5, 5 \rangle$ to the line through the vector $\langle 0, 1, 2 \rangle$ is
 - A. $\langle 0,1,2\rangle$
 - B. $\langle 0, 2, 4 \rangle$
 - C. $\langle 0,3,6\rangle$
 - D. $\langle 0, 4, 8 \rangle$
 - E. $\langle 0, 5, 10 \rangle$

- 4. Find the area of the region in the first quadrant bounded above by $y = \frac{\pi}{2}x$ and below by $y = \sin^{-1} x$.
 - A. $1 \frac{\pi}{4}$
B. $\frac{1}{2}$
C. $\frac{\pi}{2} 1$
D. $\frac{\pi^2}{4} 1$
E. $\frac{1}{4}$

- 5. Find the volume of a solid whose base is a unit disk in the xy-plane, and whose cross sections perpendicular to the x-axis are squares.
 - A. $\frac{4}{3}$ B. $\frac{8}{3}$ C. 4 D. $\frac{16}{3}$ E. $\frac{20}{3}$

- 6. The region bounded by y = x and $y = x^2$ is rotated about the line y = 1. Find the volume of the resulting solid.
 - A. $\frac{\pi}{2}$ B. $\frac{\pi}{3}$ C. $\frac{\pi}{4}$ D. $\frac{\pi}{5}$ E. $\frac{\pi}{6}$

7.
$$\int_{-1}^{1} x e^{x} dx =$$

A. $e + \frac{1}{e}$
B. $e - \frac{1}{e}$
C. $2e$
D. 0
E. $\frac{2}{e}$

8.
$$\int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cos^{3}\theta \, d\theta =$$

A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{6}$
D. $\frac{2}{15}$
E. $\frac{1}{15}$

9.
$$\int_{2}^{3} \frac{dx}{x^{2} - 5x + 4} =$$
A.
$$-\frac{2 \ln 2}{3}$$
B.
$$-\frac{\ln 2}{2}$$
C.
$$\frac{\ln 2}{2}$$
D.
$$\frac{\ln 2}{3}$$
E.
$$\frac{2 \ln 2}{3}$$

10.
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{1 - x^2} \, dx =$$

A. $\frac{\pi}{6} + \frac{\sqrt{3}}{4}$
B. $\frac{\pi}{3} + \frac{\sqrt{3}}{2}$
C. $\frac{\pi}{6} + \frac{\sqrt{3}}{2}$
D. $\frac{\pi}{3} + \frac{\sqrt{3}}{4}$
E. $\frac{\pi}{3}$

11. Which of the following integrals converges?

(a)
$$\int_{e}^{\infty} \frac{dx}{x \ln x}$$
, (b) $\int_{0}^{1} \frac{dx}{\ln(1 + \sqrt{x})}$, (c) $\int_{0}^{1} \frac{dx}{1 + \ln x}$.

A. All converge

B. All diverge

C. (a) converges, (b) and (c) diverge

- D. (b) converges, (a) and (c) diverge
- E. (c) converges, (a) and (b) diverge

12. Find the area of a surface obtained by rotating the curve $y = \sqrt{x}$ for $0 \le x \le 1$ about the x-axis.

A.
$$\frac{\pi}{3}(2\sqrt{2}-1)$$

B. $\frac{\pi}{6}(5\sqrt{5}-1)$
C. $\frac{\pi}{3}(5\sqrt{5}+1)$
D. $\frac{\pi}{4}(5\sqrt{5}-1)$
E. $\frac{\pi}{2}(2\sqrt{2}-1)$

13.
$$\lim_{n \to \infty} \left(\sqrt{n^2 + n} - n \right) =$$
A. 0
B. 1/2
C. 1
D. 2
E. ∞

14. Find the center of mass of the region bounded by y = 0 and $y = \sin x$, $0 \le x \le \pi$.

A.
$$\left(\frac{\pi}{2}, \frac{1}{4}\right)$$

B. $\left(\frac{\pi}{2}, \frac{1}{6}\right)$
C. $\left(\frac{\pi}{2}, \frac{\pi}{8}\right)$
D. $\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$
E. $\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$

15.
$$\sum_{n=0}^{\infty} e^{-2n} =$$
A. $e - 1$
B. $e^2 - 1$
C. $\frac{e}{e - 1}$
D. $\frac{e^2}{e^2 - 1}$
E. $\frac{1}{e^2 - 1}$

16. Which of the following series converges?

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$
, (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{1+\ln n}$, (c) $\sum_{n=1}^{\infty} \ln\left(1+\frac{1}{n^2}\right)$.

A. All converge.

B. All diverge.

- C. (a) and (b) converge, (c) diverges.
- D. (a) and (c) converge, (b) diverges.
- E. (b) and (c) converge, (a) diverges.

17. The radius of convergence of the series $\sum_{n=1}^{\infty} \frac{x^{2n+1}}{n^2 3^n}$ is

- A. 3 B. $\sqrt{3}$
- C. 1 D. $\frac{\sqrt{3}}{3}$ E. $\frac{1}{3}$

18. The series
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{n}$$
 represents the function
A. $\frac{1}{1-x^2}$
B. $\frac{1}{(1-x)^2}$
C. $\ln(1-x^2)$
D. $-\ln(1-x^2)$
E. $\ln^2(1-x)$

19. In polar coordinates, equation $r = \sin \theta + 2 \cos \theta$ represents a circle with the radius

A.
$$\frac{1}{2}$$

B. $\frac{\sqrt{2}}{2}$
C. $\frac{\sqrt{3}}{2}$
D. 1
E. $\frac{\sqrt{5}}{2}$

20. If $z = 1 - i\sqrt{3}$ and w = 1 - i then the polar form for $\frac{z}{w}$ is

A.
$$\sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right)$$

B. $\sqrt{2} \left(\cos \frac{23\pi}{12} + i \sin \frac{23\pi}{12} \right)$
C. $\sqrt{2} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$
D. $\sqrt{2} \left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6} \right)$
E. $\sqrt{2} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$