MA166 — EXAM III — FALL 2018 — NOVEMBER 16, 2018 TEST NUMBER 11

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. MARK YOUR TEST NUMBER ON YOUR SCANTRON
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 6 different test pages (including this cover page).
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. The test has 11 problems, worth 9 points; each everyone gets 1 point. The maximum possible score is 100 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have doubts, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
- 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, given it to your instructor and left the room.
- 5. Do not consult notes or books.
- 6. **Do not handle** phones or cameras, calculators or any electronic device until after you have finished your exam, given it to your instructor and left the room.
- 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
- 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT NAME:
STUDENT SIGNATURE:
STUDENT ID NUMBER:
SECTION NUMBER AND RECITATION INSTRUCTOR:

1. Which of the following statements are true?

I. The series
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 converges
II. The series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ converges
III. The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges

- A. I, II and III are true
- B. I is true, II and III are false
- C. I and II are true, III is false
- D. I and III are true, II is false
- E. II and III are true, I is false
- 2. Which of the following statements are true?

I. If a series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} |a_n| = 0$ II. If $\lim_{n\to\infty} |a_n| = 0$, then $\sum_{n=1}^{\infty} a_n$ always converges III. If the series $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges A. I, II and III are true B. I is true, II and III are false C. I and II are true, III is false

- D. I and III are true, II is false
- E. II and III are true, I is false

3. Which of the statements are true?

I. If
$$a_n > 0$$
 and the series $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} n a_n$ diverges
II. If $a_n > 0$ and the series $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges
III. If $a_n > 0$ and $\sum_{n=2}^{\infty} (\ln n)^2 a_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges
A. I and II are true, but III is false

- B. I and III are true, but II is false
- C. II and III are true, but I is false
- D. I, II and III are true
- E. I, II and III are false
- 4. Which of the statements are true?

I. If
$$a_n > 0$$
 and the series $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} \sin(a_n)$ also converges
II. If $a_n > 0$ and the series $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} e^{a_n}$ converges
III. If $a_n > 0$ and $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} \ln(a_n)$ diverges
A. I and II are true, but III is false

- B. I and III are true, but II is false
- C. II and III are true, but I is false
- D. I, II and III are true
- E. I, II and III are false

- 5. Find all values of p such that the series $\sum_{k=1}^{\infty} \left(\frac{k^4 + 3k}{k^p + 2}\right)^{1/3}$ converges.
 - A. p > 8
 - B. p > 6
 - C. p > 5
 - D. p > 4
 - E. p > 7

6. Which of the following alternating series converge?

I)
$$\sum_{n=1}^{\infty} (-1)^{n-1} (\ln(n+1) - \ln(n))$$

II) $\sum_{n=1}^{\infty} (-1)^{n-1} \cos(\frac{1}{n^2})$
III) $\sum_{n=1}^{\infty} (-1)^{n-1} \sin(\frac{1}{n})$

- A. I, II and III
- B. I and II only
- C. I and III only
- D. II and III only
- E. None of them

- 7. Let $S = \sum_{m=1}^{\infty} (-1)^{m-1} \frac{1}{m^4}$ and its partial sum $S_n = \sum_{m=1}^n (-1)^{m-1} \frac{1}{m^4}$. According to the alternating series estimation theorem, what is the smallest n such that $|S S_n| < 4^4 \times 10^{-8}$?
 - A. n = 25
 - B. n = 24
 - C. n = 30
 - D. n = 35
 - E. n = 45

- 8. Let a_n , be a sequence defined recursively by $a_{n+1} = (-1)^{n-1} \left(\sqrt{n^2 + 2n} \sqrt{n^2 + n} \right) a_n$ and $a_1 \neq 0$. Which of the following is true?
 - A. $\sum_{n=1}^{\infty} a_n$ converges absolutely B. $\sum_{n=1}^{\infty} a_n$ converges conditionally C. $\sum_{n=1}^{\infty} a_n$ diverges D. $\sum_{n=1}^{\infty} a_n$ could converge or diverge; it depends on a_1 .
 - E. None of the above

- 9. The radius and interval of convergence of the power series $\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^n}{n}$ are
 - A. R = 2 and [0, 4]
 - B. R = 2 and (0, 4]
 - C. R = 2 and (0, 4)
 - D. R = 1 and (1, 3]
 - E. R = 1 and (1, 3)

10. Find the Taylor series representation of the function $f(x) = \frac{1}{1-x}$ centered at -4.

A.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n} (x+4)^n$$

B.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} (x+4)^n$$

C.
$$\sum_{n=0}^{\infty} \frac{1}{5^{n+1}} (x+4)^n$$

D.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{5^{n+1}} (x+4)^n$$

E.
$$\sum_{n=0}^{\infty} \frac{1}{5^n} (x+4)^n$$

11. Find the Taylor series representation of the function $f(x) = \frac{1}{(2-x)^2}$ centered at 0.

A.
$$f(x) = \sum_{n=0}^{\infty} \frac{n+1}{2^{n+2}} x^n$$

B. $f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{n+1}{2^{n+2}} x^n$
C. $f(x) = \sum_{n=0}^{\infty} \frac{n}{2^n} x^n$
D. $f(x) = \sum_{n=0}^{\infty} \frac{n+1}{2^{n+1}} x^n$
E. $f(x) = \sum_{n=0}^{\infty} \frac{n+2}{2^n} x^n$