እስለ ነገር		
NAME	Page 1	/21
10-DIGIT PUID	Page 2	/30
RECITATION INSTRUCTOR	Page 3	/28
	Page 4	/21
RECITATION TIME	TOTAL	/100

DIRECTIONS

- 1. Write your name, 10-digit PUID, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3, and 4.
- 2. The test has four (4) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes, calculators, or any electronic devices may be used on this test.

(9)	1.	$\int an$	$x \sec^2 x$	x	dx
-----	----	------------	--------------	---	----

Spring 2010

(8) 3. $\int \frac{\tan(\frac{1}{x})}{x^2} dx.$

(12) 4. Write out the form of the partial fraction decomposition of the following functions.

Do not determine the numerical values of the coefficients.

(a)
$$\frac{x^3}{x^2 + 4x + 3} =$$

(b)
$$\frac{2x+1}{(x+1)^3(x^2+4)^2} =$$

(10) 5.
$$\int \frac{1}{x^2(x-1)} dx$$

(18) 6. Determine whether each integral is convergent or divergent and find its value if it is convergent. <u>Important</u>: You must use the definition of improper integrals in terms of limits.

.

(b) $\int_{2}^{3} \frac{1}{\sqrt{3-x}} dx$

(c) $\int_{-\infty}^{0} e^{-x} dx$

(10) 7. Find the length of the curve $y = \ln(\cos x)$, $0 \le x \le \frac{\pi}{3}$. [Hint: $\int \sec x dx = \ln|\sec x + \tan x| + C$].

- (13) 8. Consider the triangular lamina with vertices at (0,0), (3,0) and (3,5), and with density $\rho = 1$. Find the following:
 - (a) The mass m of the lamina.

m =

(b) The moment M_y of the lamina about the y-axis.

 $M_y =$

(c) The moment M_x of the lamina about the x-axis.

 $M_x =$

(d) The center of mass $(\overline{x}, \overline{y})$ of the lamina.

 $(\overline{x},\overline{y}) =$

(8) 9. Determine whether each sequence below converges or diverges and if it converges find its limit. (You need not show work for this problem).

(a)
$$a_n = \frac{3^{n+2}}{5^n}$$

(b) $\left\{ \frac{(2n-1)!}{(2n+1)!} \right\}$

(c) $a_n = \frac{e^n}{n^3}$

(d) $a_n = \frac{n}{\sqrt{3n^2 + 1}}$