NAME	Page 1	/17
STUDENT ID	Page 2	/18
RECITATION INSTRUCTOR	Page 3	/20
	Page 4	/23
RECITATION TIME	Page 5	/18
	TOTAL	/100

DIRECTIONS

- 1. Write your name, student ID number, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3, 4 and 5.
- 2. The test has five (5) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes or calculators may be used on this test.

(4) 1. Express
$$\frac{x^2+1}{x^2(x^2+9)}$$
 as a sum of partial fractions. Do not evaluate the constants.

$$\frac{x^2 + 1}{x^2(x^2 + 9)} =$$

(13) 2. Evaluate
$$\int \frac{x+1}{x(x^2+1)} dx$$

(18) 3. Determine whether the improper integral converges or diverges. If it converges find its value. <u>Important</u>: Show clearly how limits are involved.

(a)
$$\int_2 \frac{1}{x(\ln x)^3} dx$$

(b)
$$\int_0^3 \frac{1}{(x-1)^{4/3}} dx$$

(10) 4. The base of a solid is a circle of radius 1. The cross sections perpendicular to a given diameter are squares. Find the volume of the solid.

(10) 5. Let R be the region between the graphs of $y = \sqrt{x+1}$ and $y = \sqrt{x-1}$ on the interval [1,3]. Find the volume of the solid obtained by revolving R about the x axis.

(10) 6. Let R be the region between the graph of $x = \frac{\ln y}{y}$ and the y axis on the interval $1 \le y \le 2$. Set up an integral (in y) for the volume V of the solid generated by revolving R about the x-axis. Do not evaluate the integral.

V =

(13) 7. A tank has the shape of the surface generated by revolving the curve $y = x^3$, $0 \le x \le 1$ about the *y*-axis. The tank is full of water. Set up an integral (in *y*) for the work *W* required to pump all the water to a level 4 feet above the top of the tank. Do not evaluate the integral. (Water weighs 62.5 lbs/ft³).

MA 166	Exam 2	Spring 1999	Name	Page 5/5
--------	----------	-------------	------	----------

(10) 8. Find the center of gravity (\bar{x}, \bar{y}) of the region bounded by the graphs of $x = y^2$ and x = 1.

 $(\bar{x},\bar{y}) =$

(12) 9. Find the third Taylor polynomial $p_3(x)$ of $f(x) = \ln(1+x)$.