MA166 — EXAM II — FALL 2018 — OCTOBER 19, 2018 TEST NUMBER 11

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. MARK YOUR TEST NUMBER ON YOUR SCANTRON
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 6 different test pages (including this cover page).
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. There are 10 problems and each one is worth is 10 points. The maximum possible score is 100 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. If you do not finish your exam in the first 50 minutes, you must wait until the end of the exam period to leave the room.
- 9. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have doubts, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
- 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, given it to your instructor and left the room.
- 5. Do not consult notes or books.
- 6. **Do not handle** phones or cameras, calculators or any electronic device until after you have finished your exam, given it to your instructor and left the room.
- 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
- 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT NAME:
STUDENT SIGNATURE:
STUDENT ID NUMBER:
SECTION NUMBER AND RECITATION INSTRUCTOR:

- 1. Compute the integral $\int_{\sqrt{2}}^{2} \frac{dx}{x\sqrt{x^2-1}}$
 - A. $\frac{\pi}{12}$

 - B. $\frac{\pi}{4}$ C. $\frac{\pi}{3}$ D. $\frac{\pi}{6}$ E. $\frac{\pi}{9}$

- 2. Find the length of the curve $y = x^3 + \frac{1}{12}x^{-1}$ for $1 \le x \le 2$.
 - A. $8 + \frac{1}{24}$
 - B. $8 \frac{1}{24}$
 - C. $8 \frac{1}{12}$
 - D. $7 + \frac{1}{24}$
 - E. $7 \frac{1}{24}$

Which of the following integrals converge?

I.
$$\int_0^\infty x e^{-x^2} dx$$
 II. $\int_1^2 \frac{1}{\sqrt{(x-1)(2+x)}} dx$ III. $\int_1^3 \frac{1}{x-2} dx$

II.
$$\int_{1}^{2} \frac{1}{\sqrt{(x-1)(2+x)}} dx$$

III.
$$\int_{1}^{3} \frac{1}{x-2} dx$$

- A. I and II only
- B. II and III only
- C. II only
- D. I and III only
- E. All of them

- 4. Compute the integral $\int_0^1 \frac{1}{x^2 + 4x + 3} dx$.
 - A. $\frac{1}{2}\ln(\frac{5}{4})$
 - B. $\frac{1}{2}\ln(\frac{5}{2})$
 - $C. \ \frac{1}{2} \ln(\frac{3}{2})$
 - D. $\frac{1}{2}\ln(\frac{5}{3})$
 - E. $\frac{1}{2}\ln(\frac{8}{3})$

- **5.** Compute $\int_{1}^{2} \frac{1}{x(x^2+1)} dx$
 - A. $\ln(4\sqrt{5})$
 - B. $\ln(\frac{2\sqrt{2}}{\sqrt{5}})$
 - C. $\ln(\frac{4}{\sqrt{5}})$
 - D. $\ln(\frac{8}{5})$
 - E. $\ln(20\sqrt{5})$

- **6.** The area of the region of the plane bounded by the curves $y = \sqrt{1+x^2}$, y = 1, x = 0 and $x = \sqrt{8}$ is equal to A. The x-coordinate of its centroid is equal to
 - A. $\frac{5}{A}$
 - B. $\frac{8}{3A}$
 - C. $\frac{12}{5A}$
 - D. $\frac{8}{3A}$
 - E. $\frac{14}{3A}$

- 7. The curve $y = 1 + x^3$, $1 \le x \le 2$, is rotated about the line x = 1. The resulting surface has area given by
 - A. $2\pi \int_{1}^{2} (1+x^3)\sqrt{1+9x^4} dx$
 - B. $2\pi \int_{1}^{2} x\sqrt{1+9x^4} dx$
 - C. $2\pi \int_{1}^{2} (x-1)\sqrt{1+9x^4} dx$
 - D. $2\pi \int_{1}^{2} (x+1)\sqrt{1+9x^4} dx$
 - E. $2\pi \int_{1}^{2} (x+1)^{3} \sqrt{1+9x^{4}} dx$

- 8. Compute the limit $\lim_{n \to \infty} \frac{2n^3 + 8n^2 + 2n + 1}{n^3 + 2n + 2}$
 - A. 1
 - B. 2
 - C. 3
 - D. 0
 - E. 4

- **9.** The sum of the series $S = \sum_{n=1}^{\infty} \frac{1}{(\sqrt{2})^n}$ is equal to
 - A. $S = \frac{1}{2}(\sqrt{2} + 1)$
 - B. $S = \sqrt{2} + 1$
 - C. $S = \frac{1}{\sqrt{2} + 1}$
 - D. $S = \frac{2}{\sqrt{2} + 1}$
 - E. $S = \frac{\sqrt{2} 1}{\sqrt{2} + 1}$

- 10. If we use the midpoint rule to approximate the integral $\int_0^5 2^{-x} dx$ with N=5 we obtain the following:
 - A. $64(2^{-\frac{9}{2}})$
 - B. $15(2^{-\frac{7}{2}})$
 - C. $31(2^{-\frac{9}{2}})$
 - D. $41(2^{-\frac{7}{2}})$
 - E. $21(2^{-\frac{9}{2}})$