MA 16600 EXAM 1 INSTRUCTIONS VERSION 01 FEBRUARY 8, 2017

Your name	Your TA's name	
Student ID #	Section # and recitation time	

- 1. You must use a #2 pencil on the scantron sheet (answer sheet).
- 2. Check that the cover of your question booklet is GREEN and that it has VERSION 01 on the top. Write 01 in the TEST/QUIZ NUMBER boxes and blacken in the appropriate spaces below.
- **3.** On the scantron sheet, fill in your <u>TA's</u> name (NOT the lecturer's name) and the <u>course number</u>.
- 4. Fill in your NAME and PURDUE ID NUMBER, and blacken in the appropriate spaces.
- **5.** Fill in the four-digit <u>SECTION NUMBER</u>.
- **6.** Sign the scantron sheet. All the answers should be marked on the scantron sheet.
- 7. Blacken your choice of the correct answer in the spaces provided for each of the questions 1–12. Do all your work on the question sheets. Show your work on the question sheets. Although no partial credit will be given, any disputes about grades or grading will be settled by examining your written work on the question sheets.
- 8. There are 12 questions, each worth 8 points. The maximum possible score is $8 \times 12 + 4$ (for taking the exam) = 100 points.
- **9.** NO calculators, electronic device, books, or papers are allowed. Use the back of the test pages for scrap paper.
- 10. After you finish the exam, turn in BOTH the scantron sheets and the exam booklets.
- 11. If you finish the exam before 7:25, you may leave the room after turning in the scantron sheets and the exam booklets. If you don't finish before 7:25, you should REMAIN SEATED until your TA comes and collects your scantron sheets and exam booklets.

Exam Policies

- 1. Students must take pre-assigned seats and/or follow TAs' seating instructions.
- 2. Students may not open the exam until instructed to do so.
- 3. No student may leave in the first 20 min or in the last 5 min of the exam.
- 4. Students late for more than 20 min will not be allowed to take the exam; they will have to contact their lecturer within one day for permission to take a make-up exam.
- 5. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs will collect the scantrons and the exams.
- 6. Any violation of the above rules may result in score of zero.

Rules Regarding Academic Dishonesty

- 1. You are not allowed to seek or obtain any kind of help from anyone to answer questions on the exam. If you have questions, consult only your instructor.
- 2. You are not allowed to look at the exam of another student. You may not compare answers with anyone else or consult another student until after you have finished your exam, handed it in to your instructor and left the room.
- 3. You may not consult notes, books, calculators. You may not handle cell phones or cameras, or any electronic devices until after you have finished your exam, handed it in to your instructor and left the room.
- 4. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty can be very severe and may include an F in the course. All cases of academic dishonesty will be reported immediately to the Office of the Dean of Students.

I have read and understand the exam policies and the rules regarding the academic dishonesty stated above:

STUDENT NAME:		
STUDENT SIGNATURE:		

Questions

- 1. The distance from the point (1,0,4) to the closest point on the sphere $x^2+y^2+z^2-6x+2y-4z+13=0$ is
 - A. $\sqrt{17}$
 - B. 2
 - C. 3
 - D. $\sqrt{14}$
 - E. $2\sqrt{14} 1$

2. We are given two vectors

$$egin{array}{lll} ec{a} &=& 2\mathbf{i} + \mathbf{x}\mathbf{j} - \mathbf{k} \ ec{b} &=& \mathbf{5}\mathbf{i} - \mathbf{3}\mathbf{j} + \mathbf{2}\mathbf{k} \end{array}$$

Determine the value of x so that \vec{b} is perpendicular to $2\vec{a} + \vec{b}$.

- A. $\frac{46}{3}$
- B. $\frac{8}{3}$ C. 7
- D. 9
- E. 11

- **3.** The area of the parallelogram formed by the vectors $\vec{a}=3\vec{i}-2\vec{j}+\vec{k}$ and $\vec{b}=-2\vec{i}+3\vec{j}-\vec{k}$ is
 - A. $\sqrt{21}$
 - B. $\sqrt{7}$
 - C. $\sqrt{27}$
 - D. $\sqrt{51}$
 - E. 35

4. Find $\mathbf{Proj}_{\vec{a}}\vec{b}$ (the projection of \vec{b} onto \vec{a}), when

$$\vec{a} = \langle 3, 1, -1 \rangle$$

 $\vec{b} = \langle -1, 4, 5 \rangle$

$$b = \langle -1, 4, \xi \rangle$$

- A. $\langle \frac{-12}{11}, \frac{-4}{11}, \frac{4}{11} \rangle$
- B. $\langle \frac{-12}{\sqrt{11}}, \frac{-4}{\sqrt{11}}, \frac{4}{\sqrt{11}}, \rangle$
- C. $\langle \frac{2}{21}, -\frac{8}{21}, -\frac{1}{21} \rangle$
- D. $\langle \frac{2}{\sqrt{21}}, -\frac{8}{\sqrt{21}}, -\frac{1}{\sqrt{21}} \rangle$
- E. (9, 3, -3)

5. Find the area of the region bounded by the curves

$$\begin{cases} y = \frac{1}{x} \\ y = x \\ y = \frac{1}{4}x \end{cases}$$

- A. $\sqrt{2} 1$
- B. 2
- C. $\ln 2$
- D. π^2
- E. e^2

- **6.** The volume of the solid obtained by rotating about the line x=-1 the region enlosed by $y=\frac{3}{x}, \ y=0, \ x=1, \ x=2$ is
 - A. $6\pi + \ln 2$
 - B. $\pi (\ln 2 + \frac{1}{\ln 2})$
 - C. $\pi(\frac{1}{2} + \ln 2)$
 - D. $6\pi(1 + \ln 2)$
 - E. 12π

- 7. Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2x^2-x^3$ and y=0.
- A. π
- B. $\frac{8}{5}\pi$
- C. $\frac{16}{5}\pi$
- D. $\frac{4}{3}\pi$
- E. $\frac{4}{3}$

8. A solid S has a base on the xy-plane enclosed by the parabola $y = 1 - x^2$ and the x-axis. Its cross sections perpendicular to the x-axis are squares. The volume of the solid is given by the formula

A.
$$2\int_0^1 (1-x^2)^2 dx$$

B.
$$2\pi \int_{-1}^{1} (1-x^2)^2 dx$$

C.
$$2\sqrt{3} \int_0^1 (1-x^2)^2 dx$$

D.
$$3\int_{-1}^{1} (1+x^2)dx$$

E.
$$2\pi \int_0^1 (1-x^2)dx$$

- 9. A tank has the shape of an inverted circular cone with height 2 feet and base radius 1 ft. If the tank is filled with water, find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is $\rho = 62.5 \text{ lb/ft}^3$.)
 - A. $\frac{\rho\pi}{3}$ ft-lb.
 - B. $\frac{\rho\pi}{4}$ ft-lb.
 - C. $\frac{\rho\pi}{6}$ ft-lb.
 - D. $\frac{3\rho\pi}{8}$ ft-lb.
 - E. $\frac{2\rho\pi}{3}$ ft-lb.

- 10. The work needed to stretch a spring from its natural length of 1.5 m to a length of 2 m is $\frac{1}{4}$ J. How much work is needed to stretch the spring from a length of 2 m to a length of 3 m?
 - A. $\frac{1}{2}$ J
 - B. $\frac{5}{7}$ J
 - C. 2J
 - D. 3 J
 - E. 5 J

- 11. The average of the function $f(x) = e^{\sin(x)}\cos(x)$ on the interval $[0, \frac{\pi}{3}]$ is
 - A. $\frac{3}{\pi}e^{\frac{1}{2}}$
 - B. $\frac{\pi}{3}(e^{\frac{1}{2}}-1)$
 - $C. \frac{\pi}{3}e^{\frac{\sqrt{3}}{2}}$
 - D. $\frac{3}{\pi} (e^{\frac{\sqrt{3}}{2}} 1)$
 - E. $\frac{4}{3}$

- **12.** Compute $\int_1^2 x \ln x \ dx$
 - A. $\ln 2 \frac{1}{2}$
 - B. $2 \ln 2 \frac{3}{4}$
 - C. $2 \ln 2 \frac{1}{2}$
 - D. $2 \ln 2 1$
 - E. $\ln 2 \frac{1}{4}$