MA 166	EXAM 1	Spring 2000	
NAME		Pa	nge 1
STUDENT ID _		Pa	age 2
RECITATION I	NSTRUCTOR	Ра	nge 3
		Pa	nge 4
RECITATION 7			

Page 1	/15
Page 2	/19
Page 3	/24
Page 4	/24
Page 5	/18
TOTAL	/100

Page 1/5

DIRECTIONS

- 1. Write your name, student ID number, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3, 4 and 5.
- 2. The test has five (5) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes or calculators may be used on this test.

(5) 1. Let $\vec{a} = \vec{i} + \vec{j}$ and $\vec{b} = -\vec{i} + x\vec{j}$. Find x so that \vec{a} is perpendicular to $\vec{a} - \vec{b}$.

x =

(10) 2. If P = (1, 2, 3), Q = (-1, 0, 1) and R = (1, 1, 0), find $pr_{\overrightarrow{PQ}} \overrightarrow{PR}$.

MA 166	Exam 1	Spring 2000	Name	Page 2/5
--------	----------	---------------	------	----------

(5) 3. Let $\vec{a} = 3\vec{i} - 2\vec{j}$ and $\vec{b} = (s-t)\vec{i} + t\vec{j}$. Find s and t so that $\vec{a} + \vec{b} = \vec{i} + \vec{j}$.

(4) 4. Let \vec{a} and \vec{b} be unit vectors and let θ be the angle between \vec{a} and \vec{b} . For what value of θ in $[0, \pi]$ is $\vec{a} \cdot \vec{b}$ maximum?

s = , t =

(10) 5. Let $\vec{a} = \vec{i} - 3\vec{j} + 2\vec{k}$ and $\vec{b} = -2\vec{i} + \vec{j} - 5\vec{k}$. (a) Find a vector perpendicular to both \vec{a} and \vec{b} .

(b) Find a unit vector perpendicular to both \vec{a} and \vec{b} and having positive \vec{k} component.

(10) 6. The points Q = (1, 0, 0) and R = (-1, 0, 0) lie on the unit sphere

$$x^2 + y^2 + z^2 = 1.$$

If P = (x, y, z) is any other point on this sphere, prove that the vectors \overrightarrow{QP} and \overrightarrow{RP} are perpendicular.

(14) 7. Find the following limits: (a) $\lim_{x\to 0} \frac{\cos(3x) - 1}{x^2}$

(b)
$$\lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^x$$

0 Name _

(24) 8. Evaluate the integrals: (a) $\int x \sin(3x) dx$

(b) $\int x \ln x dx$

(c) $\int \cos^3 x \sin^2 x dx$

(d) $\int_0^{\frac{\pi}{4}} \cos^2 x dx$

(b)
$$\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{1+x^2}} dx$$
. [You may need: $\int \sec x \, dx = \ln |\sec x + \tan x| + C$].

Page 5/5