NAME	Page 1	/10
STUDENT ID	Page 2	/24
RECITATION INSTRUCTOR	Page 3	/24
	Page 4	/24
RECITATION TIME	Page 5	/18
	TOTAL	/100

DIRECTIONS

- 1. Write your name, student ID number, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3, 4 and 5.
- 2. The test has five (5) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes or calculators may be used on this test.
- (4) 1. Find a unit vector having the same direction as the vector $\vec{a} = \vec{i} + \vec{j} \vec{k}$.

(6) 2. If
$$\vec{a} = 2\vec{i} - \vec{j} + 2\vec{k}$$
 and $\vec{b} = \vec{i}$, find $pr_{\vec{a}}\vec{b}$.

(7) 3. Find the area of the triangle with vertices at (0,0,0), (3,2,0), and (2,6,0).

Page 2/5

(4) 4. Find x so that the vectors $\vec{a} = \vec{i} + 3\vec{j} - x\vec{k}$ and $\vec{b} = (1+x)\vec{i} + \vec{j} - \vec{k}$ are perpendicular.

(8) 5. The points (1,0,0) and $(\frac{7}{3},\frac{2}{3},\frac{2}{3})$ lie on a sphere with center at $(a,-\frac{1}{3},-\frac{1}{3})$ and radius $\sqrt{2}$. Find a.

(5) 6. A person pulls a sled 100 feet with a rope that makes an angle of $\frac{\pi}{4}$ with the horizontal ground. Find the work done on the sled if the tension in the rope is 5 pounds.

MA 166 Exam 1 Spring 1999 Name	Page 3/5
(4) 7. (a) If $\vec{a} \times \vec{b} = \vec{i} - 2\vec{j} + \vec{k}$, then $\vec{b} \times \vec{a} =$	
(b) $\vec{i} \times (\vec{j} \times \vec{k}) =$	
(14) 8. Find the following limits (a) $\lim_{x \to 0^+} \frac{x^2}{x - \sin x}$	

(b)
$$\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x$$

(6) 9.
$$\int_{1}^{2} \ln x \, dx =$$

(b)
$$\int \tan^2 x \sec^4 x \, dx$$

(c)
$$\int \cos^2 x \sin^3 x \, dx$$

(d)
$$\int \tan x \sec^3 x \, dx$$

(18) 11. Evaluate the integrals. PARTIAL CREDIT will not be given unless steps are clearly shown.

(a)
$$\int_0^2 \sqrt{4-x^2} \, dx$$

(b)
$$\int \frac{\sqrt{x^2+1}}{x^4} \, dx$$