NAME	Page 1	/16
STUDENT ID	Page 2	/31
RECITATION INSTRUCTOR	Page 3	/22
	Page 4	/31
	TOTAL	/100

DIRECTIONS

- 1. Write your name, 10-digit PUID, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3 and 4.
- 2. The test has four (4) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes, calculators or any electronic devices may be used on this exam.
- (5) 1. Find the domain of the function $h(x) = \frac{1}{\sqrt[4]{x^2 5x}}$. Write your answer in the form of interval(s).

(11) 2. (a) Make a rough sketch of the graph of the function $y = f(x) = -e^{-x}$. Show clearly where the graph intersects the coordinate axes, and the asymptotes, if any.

- (b) True or False. (Circle T or F)
- (i) f is a one-to-one function.

 \mathbf{T} \mathbf{F}

(ii) f is an even function.

 \mathbf{T} \mathbf{F}

(iii) The range of f is $(-\infty, 0)$.

T F

(iv) The domain of f^{-1} is $(0, \infty)$.

 Γ F

(v) f is increasing on $(-\infty, \infty)$.

TF

(6) 3. If $f(x) = 2x^3 + 3$, find a formula for the inverse function f^{-1} .

 $f^{-1}(x) =$

(8) 4. Find the exact value of each expression

(a)
$$e^{2 \ln 3} =$$

(b) $\log_{10} 25 + \log_{10} 4 =$

(d) $\tan(-\pi e^{-\ln 4}) =$

(6) 5. Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation $2\cos x + \sin 2x = 0$.

(4) 6. If a ball is thrown straight up into the air with a velocity of 50 ft/sec, its height in feet after t seconds is given by $y = 50t - 16t^2$. Find the velocity when t = 3.

(7) 7. Circle the interval in which you are sure that the equation $x^4 + 4x - 25 = 0$ has a solution. State the name of the theorem you are using.

[0, 1]

[1, 2]

[2, 3]

[3, 4]

Theorem:

(10) 8. For each of the following, fill in the boxes below with a finite number, or one of the symbols $+\infty$, $-\infty$, or DNE (does not exist). It is not necessary to give reasons for your answers.

(b) $\lim_{x \to 1} \frac{2-x}{(x-1)^2} =$

(c) $\lim_{h\to 0} \frac{(4+h)^2-16}{h} =$

(d) $\lim_{x \to -2} \frac{2 - |x|}{2 + x} =$

(e) $\lim_{x \to 0} \left(\frac{1}{x} - \frac{3}{x^2 + 3x} \right) =$

(6) 9. Write the equations of the vertical and horizontal asymptotes, if any, of the graph of $y = \frac{x^2 + 1}{x^2 - 1}$.

Vertical asymptotes

Horizontal asymptotes

(6) 10. Consider the function $f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 1} & \text{if } x \neq 1 \\ A & \text{if } x = 1 \end{cases}$, where A is a constant. Find the value of A for which f is continuous at x = 1.

A =

(10) 11. Find the derivative of the function $f(x) = x^3 + x$ using the definition of the derivative $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$. (0 credit for using a formula for the derivative).

(6) 12. Find the equation of the tangent line to the curve $y = 1 - x^3$ at the point (0, 1).

(15) 13. Find the derivatives of the following functions. Do not simplify.

(a)
$$y = \frac{x}{\sin x}$$
.

(b)
$$f(x) = \sqrt{x} \tan x$$
.

(c)
$$h(\theta) = \frac{\sec \theta}{1 + \sec \theta}$$
.

