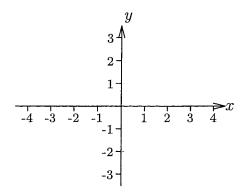

NAME		
NAME	Page 1	/14
STUDENT ID	Page 2	/30
RECITATION INSTRUCTOR	Page 3	/24
	Page 4	/32
RECITATION TIME	TOTAL	/100


DIRECTIONS

- 1. Write your name, 10-digit PUID, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3 and 4.
- 2. The test has four (4) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes, calculators or any electronic devices may be used on this exam.
- (7) 1. Find the domain and sketch the graph of the function $g(x) = \sqrt{x-2}$.

Domain :

- (7) 2. (a) Is the function $f(x) = \ln |x|$ even, odd, or neither?
- (b) Make a rough sketch of the graph of $y = \ln |x|$

(8) 3. If $\cos \theta = -\frac{2}{3}$, $\pi < \theta < \frac{3\pi}{2}$, find the following:

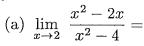
 $\sin \theta =$

 $\tan \theta =$

(6) 4. Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation $\sin 2x = \sqrt{3} \cos x$.

- (10) 5. If $f(x) = 2 e^x$, find the following:
 - (a) A formula for the inverse function $f^{-1}(x)$.

- (b) The domain of f^{-1} .
- (c) The range of f^{-1}


- $f^{-1}(x) =$

- 6. Using a theorem about continuous functions, we can conclude that the equation (6) $x^4 + x - 3 = 0$ has a root in one of the following intervals:
 - A. (-1,0)
- B. (0,1)
- C. (1,2)
- D. (2,3)
- E. (3,4)

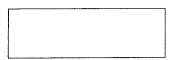
- (a) Circle the letter of that interval.
- (b) State the name of the theorem you are using.

(12) 7. For each of the following, fill in the boxes below with a finite number or one of the symbols $+\infty$, $-\infty$, or DNE (does not exist). It is not necessary to give reasons for your answers.

Name

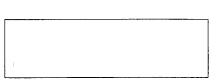
(b) $\lim_{x \to 1} \frac{2-x}{(x-1)^2} =$

(c) $\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{3t^2 + t} \right) =$

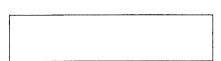

(d) $\lim_{x \to 0} x^4 \cos(\frac{1}{x}) =$

(e) $\lim_{x \to (\frac{\pi}{2})^+} e^{\tan x} =$

(f) $\lim_{x \to -5} \frac{2x+10}{|x+5|} =$

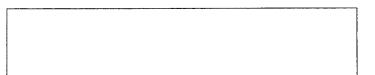

(6) 8. Write the equations of the vertical and horizontal asymptotes, if any, of the graph of $y = \frac{2x+1}{x-2}$.

Vertical asymptotes

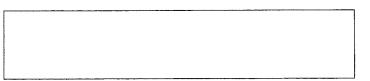

Horizontal asymptotes

(6) 9. Find the numbers at which $f(x) = \begin{cases} x+1 & \text{if } x < 0 \\ e^x & \text{if } 0 \le x \le 1 \\ 2-x & \text{if } x > 1 \end{cases}$ is discontinuous.

(10) 10. Find the derivative of the function $f(x) = \sqrt{1-x}$ using the definition of the derivative $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$. (0 credit for using a formula for the derivative).



(6) 11. Find an equation of the tangent line to the curve $y = x + \cos x$ at the point (0,1).



(16) 12. Find the derivatives of the following functions. Do not simplify.

(a)
$$f(x) = 3e^x - \sqrt[3]{x^2}$$
.

(b) $y = \frac{x \sin x}{e^x}$.

(c) $h(\theta) = \csc \theta + e^{\theta} \cot \theta$.

(d) $f(t) = \sqrt{t} + t^3 \tan t$.

