NAME	Page 1	/14
10-digit PUID	Page 2	/27
RECITATION INSTRUCTOR	Page 3	/27
	Page 4	/32
RECITATION TIME	TOTAL	/100

DIRECTIONS

- 1. Write your name, 10-digit PUID, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3 and 4.
- 2. The test has four (4) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes or calculators may be used on this exam.
- (6) 1. Circle the correct choice. $\tan^2 x \tan^2 x \sin^2 x =$
- A. $\tan^2 x$
- B. $\sin^2 x$
- C. $\cos^2 x$
- D. 1
- E. $\sec^2 x$
- (8) 2. If $f(x) = 1 x^3$ and $g(x) = \frac{1}{x}$ find the composite functions $f \circ g$ and $g \circ f$ and give their domains.

$$(f\circ g)(x) =$$

Domain of $(f \circ g)$

$$(g\circ f)(x)=$$

Domain of $(g \circ f)$

(5) 3. If $\cos \theta = -\frac{1}{3}$ and $\pi < \theta < \frac{3\pi}{2}$, find the following:

$$\sin \theta =$$

$$\tan \theta =$$

$$\sec \theta =$$

$$\csc \theta =$$

$$\cot \theta =$$

(8) 4. Find a formula for the inverse of $f(x) = e^{x^3}$.

$$\int f^{-1}(x) =$$

(9) 5. Find the equations of the vertical and horizontal asymptotes of the function $y = \frac{x+2}{x+5}$.

Vertical asymptotes

Horizontal asymptotes

- (5) 6. (a) Complete the definition: The function f is continuous at a if $\lim_{x\to a}$
 - (b) Let $f(x) = \frac{\sqrt{x+9}-3}{x}$. Use part (a) to find the value of f(0) so that f is continuous at x = 0.

$$f(0) =$$

(18) 7. For each of the following, fill in the boxes below with a finite number, or one of the symbols $+\infty$, $-\infty$, or DNE (does not exist). It is not necessary to give reasons for your answers.

(a) $\lim_{t\to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t}\right) =$

·

(b) $\lim_{x \to (\frac{\pi}{2})^+} \tan x =$

(c) $\lim_{x \to (-4)^-} \frac{|x+4|}{x+4} =$

(d) $\lim_{x\to\infty} \frac{3x^2-x+4}{2x^2+5x-8} =$

(e) $\lim_{x\to 0} \frac{\sin 3x}{x} =$

(f) $\lim_{x \to 0} \sin\left(\frac{1}{x}\right) =$

(9) 8. Let $f(x) = x^3 - x^2 + x - 2$.

(a) The number c, such that f(c) = 3, is in the interval (circle one)

A. (-1,0)

B. (0,1)

C. (1, 2)

D. (2, 3)

(b) State the name of the theorem you are using in part (a).

(10) 9. Find the derivative of the function $f(x) = \frac{1}{x^2}$ using the definition of the derivative: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$ (0 credit for using a formula for the derivative).

5

(6) 10. Prove that $\lim_{x\to 0} x^4 \cos\left(\frac{2}{x}\right) = 0$. State the name of the theorem that you use in the proof.

(4) 11. For what value(s) of x does the graph of $f(x) = 2x^3 + 3x^2 - 36x + 5$ have a horizontal tangent?

x =

(8) 12. Find the derivatives of the following functions. (It is not necessary to simplify).

(a) $y = (\tan x)(x^2 + e^x)$.

(b) $f(x) = \frac{e^x - \cos x}{x^3 + \sin x}$.

(4) 13. Find an equation of the tangent line to the curve $y = x^3 + 2\sqrt{x}$ at the point (1,3).