NAME		
	Page 1	/13
STUDENT ID	Page 2	/30
RECITATION INSTRUCTOR	Page 3	/26
	Page 4	/31
RECITATION TIME	TOTAL	/100

DIRECTIONS

- 1. Write your name, student ID number, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3 and 4.
- 2. The test has four (4) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes or calculators may be used on this exam.
- (8) 1. If $f(x) = \frac{1}{x}$ and $g(x) = x^3 2x$, find each of the following functions. (It is not necessary to simplify.)

(5) 2. A rectangle has a perimeter of 48 m. Express its area, A, as a function of the length of one of its sides.

A =			

Name:

(8) 3. Find the exponential function $f(x) = Ca^x$ whose graph is given below.

$$f(x) =$$

(10) 4. Find the inverse of the following function and state its domain.

$$g(x) = \ln(7x - 3), g^{-1}(x) =$$

(6) 5. Find the value(s) of a so that the function f is continuous on $(-\infty, \infty)$ if $f(x) = \begin{cases} x^2 + a, & x \le 1 \\ a^2 - x, & x > 1 \end{cases}$

(6) 6. Find the equations of the horizontal and vertical asymptotes of the function $y = \frac{x^2 + 5x - 9}{x^2 - 3x + 2}.$

		1
		- 1
		- 1
		- 1

vertical asymptote(s)

l		
1		
l		
l		
l		
l		
l		
l		
l		
l		
l		
l		
l		

Name:

(18) 7. For each of the following fill in the boxes below with a finite number, or one of the symbols: ∞ , $-\infty$, or DNE (does not exist). It is not necessary to give reasons for your answers.

(a) $\lim_{x \to (-\frac{\pi}{2})^-} \sec x =$

(b) $\lim_{x \to \infty} \frac{x^2 - x + 5}{3x^2 + x - 1} =$

(c) $\lim_{x \to 0^-} \frac{2}{x} =$

(d) $\lim_{x \to 5} \frac{x-5}{|x-5|} =$

(e) $\lim_{x \to 3} \left(\frac{1}{x-3} - \frac{6}{x^2 - 9} \right) =$

(f) $\lim_{x \to \infty} \cos x =$

(8) 8. Find the derivative of $f(x) = \sqrt{x}$ using the definition of the derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Name:

(6) 9. For what values of x does the graph $f(x) = 2x^3 - 3x^2 - 6x + 87$ have a horizontal tangent.

(15) 10. Find the derivatives of the following functions. (It is not necessary to simplify.)

(a)
$$y = \frac{e^x}{1+x}$$

(b) $f(x) = x^2 \sin x$

$$f'(x) =$$

(c) $g(t) = \sec t \tan t$

$$g'(t) =$$

(10) 11. Find the following limits. (Use the fact that $\lim_{x\to 0} \frac{\sin x}{x} = 1$.) Show your work.

(a)
$$\lim_{\theta \to 0} \frac{\sin^2 \theta}{\theta} =$$

(b)
$$\lim_{x \to 0} \frac{\tan x}{4x} =$$