MATH 162 – SPRING 2010 – FINAL EXAM – MAY 7, 2010 VERSION 01 MARK TEST NUMBER 01 ON YOUR SCANTRON

STUDENT NAME————————————————————————————————————
STUDENT ID————————————————————————————————————
RECITATION INSTRUCTOR————————————————————————————————————
INSTRUCTOR————————————————————————————————————
RECITATION TIME————————————————————————————————————

INSTRUCTIONS

- 1. Fill in all the information requested above and the version number of the test on your scantron sheet.
- 2. This booklet contains 25 problems, each one is worth 8 points. The maximum score is 200 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes and calculators are not allowed.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

- 1) The area of the triangle with vertices P(1,2,1), Q(-1,3,2) and R(3,1,1) is equal to
- A) 2
- B) $4\sqrt{2}$
- C) $\frac{\sqrt{3}}{2}$
- $D) \frac{\sqrt{5}}{2}$
- E) $2\sqrt{3}$

- 2) Let P(2,4), Q(3,-1) and R(1,3) be 3 points. The cosine of the angle between vectors \vec{PQ} and \vec{QR} is

- A) $\frac{-3}{\sqrt{52}}$ B) $\frac{2}{\sqrt{40}}$ C) $\frac{-2}{\sqrt{40}}$ D) $\frac{3}{\sqrt{52}}$ E) $\frac{-22}{\sqrt{520}}$

- 3) The area of the region bounded by the curves $y = 2 x^2$ and y = x is
- A) $\frac{42}{5}$
- B) 6
- C) $\frac{37}{4}$
- D) $\frac{9}{2}$
- E) $\frac{38}{3}$

4) The region bounded by y = 2x, y = 0 and x = 2 is rotated about the y-axis. The volume of the resulting solid of revolution (using the disk/washer method) is

A)
$$\int_0^4 \pi \left(4 - \left(\frac{y}{2}\right)^2\right) dy$$

B)
$$\int_0^4 \pi \left(2 - \frac{y}{2}\right)^2 dy$$

C)
$$\int_0^4 \pi (2x)^2 dx$$

D)
$$\int_{0}^{2} 2\pi (2x) \ dx$$

E)
$$\int_0^2 2\pi ((2x)^2 - 2) dx$$

5) The region of the first quadrant bounded by the curves y = x and $y = \sqrt{x}$ is rotated about the axis x = 1. The volume of the resulting solid of revolution (using the cylindrical shells method) is equal to

A)
$$2\pi \int_{0}^{1} x(\sqrt{x} - x) \ dx$$

B)
$$2\pi \int_0^1 (1-x)(\sqrt{x}-x) \ dx$$

C)
$$2\pi \int_0^1 (1-2x)(\sqrt{x}-x) \ dx$$

D)
$$2\pi \int_0^1 (1-x)(x-\sqrt{x}) dx$$

E)
$$2\pi \int_0^1 x(x-\sqrt{x}) dx$$

6) If the work required to stretch a spring 1/2 ft beyond its natural length is 8 ft—lbs, how much work is needed to stretch it 1/3 ft beyond its natural length?

A)
$$\frac{4}{9}$$
 ft-lbs

B)
$$\frac{32}{9}$$
 ft-lbs

D)
$$\frac{8}{3}$$
 ft-lbs

E)
$$\frac{8}{6}$$
 ft-lbs

7)
$$\int_{2}^{\ln 10} xe^{x} dx =$$

- A) $\ln 10^9 e^2$
- B) $90 + e^2$
- C) $90 e^2$
- D) $\ln 10^{10} + 3e^2$
- E) $\ln 10^{10} 10 e^2$

$$8) \int_0^{\pi/6} \sin x \cos^3 x \ dx =$$

- A) $\frac{1}{64}$
- B) $\frac{1}{4}$
- C) $\frac{7}{64}$
- D) $\frac{-9}{64}$
- E) $\frac{-7}{64}$

9) Which integral arises when one uses a trigonometric substitution to evaluate

$$\int \frac{x^2}{\sqrt{x^2 - 4}} \, dx$$

A)
$$\int 4\sin^2\theta \ d\theta$$

B)
$$\int 4 \sec^3 \theta \ d\theta$$

C)
$$\int 4 \tan^2 \theta \sec \theta \ d\theta$$

D)
$$\int 4 \tan \theta \sec^2 \theta \ d\theta$$

E)
$$\int 4 \sec^2 \theta \ d\theta$$

10)
$$\int \frac{2x-1}{x^2(x-2)} \ dx =$$

A)
$$\frac{-5}{4} \ln|x| - \frac{3}{4} \ln|x - 2| + \frac{1}{x} + C$$

B)
$$\frac{5}{4} \ln|x| + \frac{3}{4} \ln|x - 2| + \frac{1}{x} + C$$

C)
$$\frac{-3}{4} \ln|x| + \frac{3}{4} \ln|x-2| - \frac{1}{2x} + C$$

D)
$$\frac{3}{4} \ln |x| - \frac{5}{4} \ln |x - 2| - \frac{1}{x} + C$$

E)
$$\frac{-5}{4} \ln |x| + \frac{3}{4} \ln |x-2| - \frac{1}{x} + C$$

$$11) \int_1^\infty \frac{\pi}{x^2} \ dx =$$

- A) the integral diverges
- B) $\pi \ln 2$
- C) $\pi \ln \left(\frac{1}{2}\right)$
- D) π
- E) 2π

12) The curve $y=x^2$, $2 \le x \le 3$ is rotated about the line y=-1. The resulting surface has area given by

A)
$$\int_2^3 2\pi (x^2 - 1)\sqrt{1 + x^4} dx$$

B)
$$\int_{2}^{3} 2\pi(x+1)\sqrt{1+4x^2} dx$$

C)
$$\int_{2}^{3} 2\pi(x)\sqrt{1+4x^2} dx$$

D)
$$\int_{2}^{3} 2\pi (x^{2}+1)\sqrt{1+4x^{2}} dx$$

E)
$$\int_2^3 2\pi (x^2 - 1)\sqrt{1 + 4x^2} dx$$

- 13) The area of the region of the first quadrant bounded by $y=2-x^2$, y=x and the y-axis is equal to $\frac{7}{6}$. Find the x-coordinate of the centroid of the region.
- A) 7/12 .
- B) 3/8
- C) 5/8
- D) 4/9
- E) 5/14

- 14) The limit of the sequence $a_n = n \sin\left(\frac{1}{n}\right)$ is equal to
- A) 0
- B) 1
- C) 2
- D) 3
- E) 4

- 15) Which of the following statements are true about the series $\sum_{n=0}^{\infty} a_n$?
- I) If $\lim_{n\to\infty} na_n = 1$, the series converges.
- II) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the series converges.
- III) If $\lim_{n\to\infty} |a_n|^{1/n} = 1$, the series diverges.
- A) All three are correct
- B) All three are incorrect
- C) I and II are correct, III is false
- D) II and III are correct, I is false
- E) I and III are correct, II is false

16) What can be said about the convergence of the following series

$$S_1 = \sum_{n=1}^{\infty} n \sin\left(\frac{1}{n^3}\right), \quad S_2 = \sum_{n=1}^{\infty} \frac{\ln n}{n^2}, \quad S_3 = \sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}?$$

- A) S_1 and S_2 converge, S_3 diverges
- B) S_1 and S_3 diverge, S_2 converges
- C) S_1 , S_2 and S_3 converge
- D) S_1 , S_2 and S_3 diverge
- E) S_1 and S_3 diverge, S_2 converges

17) Which of the following series diverge?

$$S_1 = \sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3}, \quad S_2 = \sum_{n=1}^{\infty} (-1)^n \frac{n^2 + n}{n^3 + n^2 + n}, \quad S_3 = \sum_{n=2}^{\infty} \frac{1}{n^2 \ln n}$$

- A) S_1 only.
- B) S_2 only.
- C) S_1 and S_2 only.
- D) S_2 and S_3 only.
- E)All of them.

18) Which statement is true about the following series

$$S_1 = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\frac{1}{3}}}, \quad S_2 = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}, \quad S_3 = \sum_{n=1}^{\infty} (-1)^n \sin(\frac{n\pi}{2})$$
?

- A) All are conditionally convergent.
- B) All are divergent.
- C) S_1 is conditionally convergent, S_2 is absolutely convergent and S_3 is divergent
- D) S_1 is absolutely convergent, S_2 is conditionally convergent and S_3 diverges
- E) S_1 and S_2 are conditionally convergent; S_3 is absolutely convergent.

- 19) The radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n (x-1)^n}{(n+1)^3}$ satisfy
- A) The radius is equal to 1 and the interval is (0, 1).
- B) The radius is equal to 2 and the interval is (0, 2).
- C) The radius is equal to 1 and the interval is (1,3).
- D) The radius is equal to 1 and the interval is (1,3].
- E) The radius is equal to 1 and the interval is [0, 2].

- 20) Let $f(x) = \sum_{n=1}^{\infty} \frac{2^n}{n^2} (x-1)^n$. We can say that the third derivative of f at the point 1 is equal to
- A) $f^{(3)}(1) = 10$.
- B) $f^{(3)}(1) = \frac{14}{5}$.
- C) $f^{(3)}(1) = \frac{13}{6}$.
- D) $f^{(3)}(1) = \frac{16}{3}$.
- E) $f^{(3)}(1) = \frac{1}{9}$.

21) Which of the following is a power series representation of the function

$$f(x) = \frac{x-1}{x^2 - 2x + 10}$$
?

A)
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^{n+1}}{9^{n+1}}$$

B)
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^{2n+1}}{9^{n+1}}$$

C)
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^{n+1}}{3^{n+1}}$$

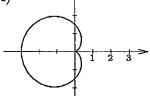
D)
$$\sum_{n=0}^{n-1} (-1)^n \frac{(x-1)^{2n+2}}{9^n}$$

E)
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^n}{3^{n+1}}$$

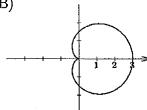
22) The foci of the ellipse
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$
 are

A)
$$(-3,0)$$
 and $(3,0)$

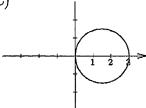
B)
$$(-5,0)$$
 and $(5,0)$

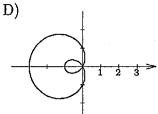

C)
$$(0, -\sqrt{7})$$
 and $(0, \sqrt{7})$

D)
$$(-\sqrt{7}, 0)$$
 and $(\sqrt{7}, 0)$

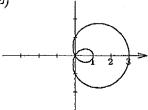

E)
$$(0, -3)$$
 and $(0, 3)$

23) The graph of the curve given by the equation $r = 1 - 2\cos\theta$ looks mostly like


A)



B)



C)

E)

24) Which of the following are polar coordinates of the point whose Cartesian coordinates are $(-1, -\sqrt{3})$?

A)
$$r = 1$$
, $\theta = \frac{\pi}{3}$.

B)
$$r = 2$$
, $\theta = \frac{2\pi}{3}$

C)
$$r = 2$$
, $\theta = \frac{7\pi}{6}$

D)
$$r = 2$$
, $\theta = \frac{4\pi}{3}$

E)
$$r = 2$$
, $\theta = \frac{7\pi}{6}$

25) The complex number $\frac{1+3i}{3+4i}$ is equal to

- A) $7 + \frac{2}{3}i$
- B) $\frac{2}{3} + \frac{1}{3}i$
- C) $\frac{3}{5} + \frac{1}{5}i$ D) $\frac{2}{5} + \frac{3}{5}i$
- $E) \frac{3}{7} + \frac{1}{7}i$