Name \qquad
ten-digit Student ID number \qquad
Lecture Time \qquad
Recitation Instructor \qquad
Section Number \qquad

Instructions:

1. Fill in all the information requested above. On the scantron sheet fill in your name, student ID number, and the section number of your recitation with an extra 0 at the left. See list below. Blacken the correct circles.
2. On the bottom under Test/Quiz Number, write 01 and fill in the little circles.
3. This booklet contains 25 problems, each worth 8 points. The maximum score is 200 points.
4. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
5. Work only on the pages of this booklet.
6. Books, notes, calculators are not to be used on this test.
7. At the end turn in your exam and scantron sheet to your recitation instructor.

TA	Lecture time	Rec. time	Sect. \#	TA	Lecture time	Rec. time	Sect. \#
Hyojung Lee	$11: 30$	$7: 30$	0022	Ritesh Nagpal	$2: 30$	$8: 30$	0010
		$8: 30$	0001			$11: 30$	0013
Kwangho Choiy	$11: 30$	$9: 30$	0002			$9: 30$	0011
		$10: 30$	0003	Matthew Barrett	$2: 30$	$10: 30$	0012
Sungmun Cho	$11: 30$	$11: 30$	0019			$12: 30$	0023
		$12: 30$	0004	Jishnu Jaganathan		$1: 30$	0015
Hyungyu Choo	$11: 30$	$1: 30$	0006			$2: 30$	0016
		$2: 30$	0007	Botong Wang	$2: 30$		
Yean Su Kim	$11: 30$	$3: 30$	0008			$3: 30$	0017
		$4: 30$	0009	Young Su Kim	$2: 30$	$4: 30$	0018

Some Useful Formulas

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
\cos x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \\
(1+x)^{k} & =\sum_{n=0}^{\infty}\binom{k}{n} x^{n}
\end{aligned}
$$

1. The equation $x^{2}+4 y^{2}-2 x-4 y=7$ in the plane describes
A. a circle with radius 3 and a center $(1,1)$
B. a circle with radius 3 and center $\left(1, \frac{1}{2}\right)$
C. a circle with radius 9 and center $(1,1)$
D. a circle with radius 9 and center $\left(1, \frac{1}{2}\right)$
E. not a circle
2. Determine whether the given pairs of vectors are orthogonal, parallel or neither

$$
\begin{array}{lr}
\vec{a}_{1}=\langle 1,-1,1\rangle & \vec{b}_{1}=\langle 1,1,1\rangle \\
\vec{a}_{2}=\langle 4,6\rangle & \vec{b}_{2}=\langle-6,-9\rangle \\
\vec{a}_{3}=-\vec{i}+2 \vec{j}+5 \vec{k} & \vec{b}_{3}=3 \vec{i}+4 \vec{j}-\vec{k}
\end{array}
$$

A. \vec{a}_{1}, \vec{b}_{1} are neither, \vec{a}_{2}, \vec{b}_{2} are orthogonal, \vec{a}_{3}, \vec{b}_{3}, are parallel.
B. \vec{a}_{1}, \vec{b}_{1} are orthogonal, \vec{a}_{2}, \vec{b}_{2} are parallel, \vec{a}_{3}, \vec{b}_{3} are orthogonal.
C. \vec{a}_{1}, \vec{b}_{1} are neither, \vec{a}_{2}, \vec{b}_{2} are parallel, \vec{a}_{3}, \vec{b}_{3} are orthogonal.
D. \vec{a}_{1}, \vec{b}_{1} are neither, \vec{a}_{2}, \vec{b}_{2} are parallel, and \vec{a}_{3}, \vec{b}_{3} are parallel.
E. \vec{a}_{1}, \vec{b}_{1} are orthogonal, \vec{a}_{2}, \vec{b}_{2} are orthogonal, and \vec{a}_{3}, \vec{b}_{3} are parallel.
3. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors in \mathbb{R}^{3}. Then

$$
((\vec{a}+\vec{b}) \times(2 \vec{a}-\vec{b})) \cdot(-5 \vec{a}+7 \vec{b}+\vec{c})
$$

equals
A. 0
B. $(\vec{a} \times \vec{b}) \times \vec{c}$
C. $(\vec{a} \times \vec{b}) \cdot \vec{c}$
D. $7(\vec{a} \times \vec{b}) \cdot \vec{c}$
E. $-3(\vec{a} \times \vec{b}) \cdot \vec{c}$
4. The area between the curves $x=1-y^{2}$ and $x=y^{2}-1$ is
A. $\frac{2}{3}$
B. $\frac{4}{3}$
C. $\frac{6}{3}$
D. $\frac{8}{3}$
E. $\frac{10}{3}$
5. A spring has a natural length of 2 m . If a force of 25 N is needed to keep it stretched to a length of 5 m , how much work is required to stretch it from 2 m to 4 m ?
A. 25 J
B. 50 J
C. $\frac{25}{2} \mathrm{~J}$
D. $\frac{25}{3} \mathrm{~J}$
E. $\frac{50}{3} \mathrm{~J}$
6. If the region bounded by $y=3+2 x-x^{2}$ and $x+y=3$ is rotated about the y-axis, then the resulting solid will have volume
A. $\frac{16}{3} \pi$
B. $\frac{9}{2} \pi$
C. $\frac{27}{2} \pi$
D. 8π
E. 9π
7. Evaluate the integral

$$
\int_{0}^{\pi} t \sin 5 t d t
$$

A. $-\frac{1}{25}$
B. $\frac{\pi}{5}$
C. $\frac{1}{25}$
D. $\frac{1}{25}-\frac{\pi}{5}$
E. $-\frac{\pi}{5}$
8. Evaluate the integral

$$
\int_{0}^{\pi / 4} \tan ^{2} x d x
$$

A. $1+\frac{\pi}{4}$
B. $-\frac{\pi}{4}$
C. $\frac{\sqrt{2}}{2}-\frac{\pi}{4}$
D. $1-\pi / 4$
E. $\frac{\sqrt{2}}{2}+\frac{\pi}{4}$
9. After the trigonometric substitution $x=4 \sin \theta$, the integral

$$
\int_{0}^{2 \sqrt{3}} \frac{x^{3}}{\sqrt{16-x^{2}}} d x
$$

is transformed into the following integral:
A. $\int_{0}^{\pi / 3} 4^{3} \sin ^{3} \theta d \theta$
B. $\int_{0}^{\frac{\pi}{3}} \frac{4^{2} \sin ^{3} \theta}{\cos \theta} d \theta$
C. $\int_{0}^{\pi / 6} 4^{3} \sin ^{3} \theta d \theta$
D. $\int_{0}^{\pi / 6} \frac{4^{2} \sin ^{3} \theta}{\cos \theta} d \theta$
E. $\int_{0}^{\pi / 3} 4^{2} \sin ^{3} \theta d \theta$
10. Evaluate

$$
\int \frac{x^{2}+2 x+5}{x^{2}+1} d x
$$

A. $x+(2 x+4) \tan ^{-1} x+C$
B. $x+\ln \left(x^{2}+1\right)+4 \tan ^{-1} x+C$
C. $\left(x^{2}+2 x+5\right) \tan ^{-1} x+C$
D. $x+2 x \ln \left(x^{2}+1\right)+4 \tan ^{-1} x+C$
E. $x+2 \ln \left(x^{2}+1\right)+4 \tan ^{-1} x+C$
11. Which of the following integrals converge?
(I) $\int_{-\infty}^{0} \frac{1}{2 x-5} d x$
(II) $\int_{2}^{3} \frac{1}{\sqrt{3-x}} d x$
(III) $\int_{0}^{\infty} \frac{x}{x^{3}+1} d x$
A. All of them
B. (I) and (II) only
C. (II) and (III) only
D. (I) and (III) only
E. none
12. Let (\bar{x}, \bar{y}) be the centroid of the region bounded by the curves $y=1 / x, y=0$, $x=1, x=2$. Then the value of \bar{x} is given by
A. 1
B. $3 / 2$
C. $\ln 2$
D. $\frac{1}{4 \ln 2}$
E. $\frac{1}{\ln 2}$
13. If $a=\lim _{n \rightarrow \infty} \cos \left(\frac{n}{2}\right)$ and $b=\lim _{n \rightarrow \infty} \cos \left(\frac{2}{n}\right)$, then
A. $a=0$ and $b=1$
B. $a=1$ and $b=0$
C. $a=1$ and b does not exist
D. a does not exist and $b=1$
E. Neither a nor b exists.
14. Find the sum of the series $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{3^{n}}$ and find the set of values for which your answer is valid.
A. $f(x)=\frac{x}{3-x}$ for $-3<x<3$
B. $f(x)=\frac{x}{3-x}$ for $-3 \leq x<3$
C. $f(x)=\frac{1}{3-x}$ for $-3<x<3$
D. $f(x)=\frac{1}{3-x}$ for $-3 \leq x<3$
E. $f(x)=\frac{1}{3-x}$ for $x \neq 3$
15. $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}$ is
A. Convergent by the integral test
B. Convergent by the ratio test
C. Divergent by the ratio test
D. Divergent by the limit comparison test
E. Divergent by the root test
16. If we know that $\ln 2=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$, what is the least number of terms of the series to use to be sure that we have approximated $\ln 2$ to within 10^{-2} ?
A. 9
B. 99
C. 999
D. 9,999
E. 999,999
17. Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{10^{n} x^{n}}{n^{3}}$.
A. $(-\infty, \infty)$
B. $(-10,10)$
C. $\left(-\frac{1}{10}, \frac{1}{10}\right)$
D. $\left[-\frac{1}{10}, \frac{1}{10}\right)$
E. $\left[-\frac{1}{10}, \frac{1}{10}\right]$
18. Find a power series representation for $f(x)=\frac{x}{2 x^{2}+1}$ and find its radius of convergence R.
A. $f(x)=\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{2 n+1}, \quad R=\frac{1}{2}$
B. $f(x)=\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{2 n+1}, \quad R=\frac{1}{\sqrt{2}}$
C. $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{2^{n}}, R=2$
D. $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2^{n}}, R=2$
E. $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2^{n}}, R=\sqrt{2}$
19. The first three terms of the McLaurin series of $f(x)=x\left(1-x^{2}\right)^{-\frac{1}{2}}$ are
A. $1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}$
B. $1-\frac{1}{2} x^{2}+\frac{3}{8} x^{4}$
C. $x+\frac{1}{2} x^{3}+\frac{3}{8} x^{5}$
D. $x-\frac{1}{2} x^{3}+\frac{3}{8} x^{5}$
E. $x+\frac{1}{2} x^{3}-\frac{1}{8} x^{5}$
20. The Taylor series of $f(x)=\cos x$ at $a=\frac{\pi}{2}$ is
A. $\sum_{n=0}^{\infty}(-1)^{n-1} \frac{\left(x-\frac{\pi}{2}\right)^{2 n+1}}{(2 n+1)!}$
B. $\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x-\frac{\pi}{2}\right)^{2 n}}{(2 n)!}$
C. $\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x-\frac{\pi}{2}\right)^{2 n+1}}{(2 n+1)!}$
D. $\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x+\frac{\pi}{2}\right)^{2 n}}{(2 n)!}$
E. $\sum_{n=0}^{\infty}(-1)^{n-1} \frac{\left(x+\frac{\pi}{2}\right)^{2 n+1}}{(2 n+1)!}$
21. $\lim _{x \rightarrow 0} \frac{\cos x-1+\frac{x^{2}}{2}}{x^{4}}=$
A. 0
B. $1 / 4$
C. $1 / 12$
D. $1 / 24$
E. None of the above
22. Find the points on the curve

$$
x=2 t^{3}+3 t^{2}-12 t, y=2 t^{3}+3 t^{2}+1
$$

where the tangent is horizontal.
A. $(20,-3)$ and $(-7,6)$
B. $(-2,0)$ and $(1,0)$
C. $(0,1)$ and $(13,2)$
D. $(0,0)$
E. $(0,-2)$ and $(0,1)$
23. Identify the curve. Hint: Find a Cartesian equation for it.

$$
r=3 \sin \theta
$$

A. a circle of radius $\sqrt{3}$ centered at $(0,0)$
B. a parabola with vertex $(0,0)$
C. a half-line through $(0,0)$
D. a cycloid
E. a circle of radius $3 / 2$ centered at $\left(0, \frac{3}{2}\right)$
24. For which values of t is the curve

$$
x=t^{3}-12 t, \quad y=t^{2}-1
$$

concave upward?
A. $t<-2$
B. $t<-2$ or $t>2$
C. $t>2$
D. $t>4$
E. $-2<t<2$
25. A part of the curve $x=3 t, y=\sin 2 t$ is sketched below, where P is the highest point on the arc shown. Then the length of the arc of the curve from P to Q is given by

A. $\int_{\pi / 2}^{\pi} \sqrt{1+4 \cos ^{2} 2 t} d t$
B. $\int_{\pi / 4}^{\pi / 2} \sqrt{9+4 \cos ^{2} 2 t} d t$
C. $\int_{\frac{\pi}{2}}^{\pi} \sqrt{9+\cos ^{2} 2 t} d t$
D. $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt{1+4 \cos ^{2} 2 t} d t$
E. $\int_{0}^{\pi} \sqrt{9+\cos ^{2} 2 t} d t$

