Name	
en-digit Student ID number	
Lecture Time	
Recitation Instructor	
Section Number	3.5

Instructions:

- 1. Fill in all the information requested above. On the scantron sheet fill in your name, student ID number, and the section number of your recitation with an extra 0 at the left. See list below. Blacken the correct circles.
- 2. On the bottom under Test/Quiz Number, write 01 and fill in the little circles.
- 3. This booklet contains 25 problems, each worth 8 points. The maximum score is 200 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

TA Hyojung Lee	Lecture time 11:30	Rec. time 7:30 8:30	Sect. # 0022 0001	TA Ritesh Nagpal	Lecture time 2:30	Rec. time 8:30 11:30	Sect. # 0010 0013
Kwangho Choiy	11:30	9:30 10:30	0002 0003	Matthew Barrett	2:30	9:30	0011
Sungmun Cho	11:30	11:30	0003	Matthew Darrett	2.00	10:30	0012
	•	12:30	0004	Jishnu Jaganathan		12:30	0023
Hyungyu Choo	11:30	1:30	0006			1:30	0015
~	44.00	2:30	0007	Botong Wang	2:30	2:30	0016
Yean Su Kim	11:30	3:30	8000	37 O 77'	0.00	0.00	0018
		4:30	0009	Young Su Kim	2:30	3:30	0017
						4:30	0018

Some Useful Formulas

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}$$

$$(1+x)^{k} = \sum_{n=0}^{\infty} {k \choose n} x^{n}$$

1. The equation $x^2 + 4y^2 - 2x - 4y = 7$ in the plane describes

- A. a circle with radius 3 and a center (1,1)
- B. a circle with radius 3 and center $(1, \frac{1}{2})$
- C. a circle with radius 9 and center (1,1)
- D. a circle with radius 9 and center $(1, \frac{1}{2})$
- E. not a circle

2. Determine whether the given pairs of vectors are orthogonal, parallel or neither

$$\begin{array}{ll} \vec{a}_1 = \langle 1, -1, 1 \rangle & \vec{b}_1 = \langle 1, 1, 1 \rangle \\ \\ \vec{a}_2 = \langle 4, 6 \rangle & \vec{b}_2 = \langle -6, -9 \rangle \\ \\ \vec{a}_3 = -\vec{i} + 2\vec{j} + 5\vec{k} & \vec{b}_3 = 3\vec{i} + 4\vec{j} - \vec{k} \end{array}$$

- A. \vec{a}_1, \vec{b}_1 are neither, \vec{a}_2, \vec{b}_2 are orthogonal, $\vec{a}_3, \vec{b}_3,$ are parallel.
- B. \vec{a}_1, \vec{b}_1 are orthogonal, \vec{a}_2, \vec{b}_2 are parallel, \vec{a}_3, \vec{b}_3 are orthogonal.
- C. \vec{a}_1, \vec{b}_1 are neither, \vec{a}_2, \vec{b}_2 are parallel, \vec{a}_3, \vec{b}_3 are orthogonal.
- D. \vec{a}_1, \vec{b}_1 are neither, \vec{a}_2, \vec{b}_2 are parallel, and \vec{a}_3, \vec{b}_3 are parallel.
- E. \vec{a}_1, \vec{b}_1 are orthogonal, \vec{a}_2, \vec{b}_2 are orthogonal, and \vec{a}_3, \vec{b}_3 are parallel.

3. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors in \mathbb{R}^3 . Then

$$((\vec{a}+\vec{b})\times(2\vec{a}-\vec{b}))\cdot(-5\vec{a}+7\vec{b}+\vec{c})$$

equals

- A. 0
- B. $(\vec{a} \times \vec{b}) \times \vec{c}$
- C. $(\vec{a} \times \vec{b}) \cdot \vec{c}$
- D. $7(\vec{a} \times \vec{b}) \cdot \vec{c}$
- E. $-3(\vec{a} \times \vec{b}) \cdot \vec{c}$

- 4. The area between the curves $x = 1 y^2$ and $x = y^2 1$ is
 - A. $\frac{2}{3}$
 - B. $\frac{4}{3}$
 - C. $\frac{6}{3}$
 - D. $\frac{8}{3}$
 - E. $\frac{10}{3}$

- 5. A spring has a natural length of 2m. If a force of 25 N is needed to keep it stretched to a length of 5m, how much work is required to stretch it from 2m to 4m?
 - A. 25J
 - B. 50J
 - C. $\frac{25}{2} J$
 - D. $\frac{25}{3} J$
 - E. $\frac{50}{3} J$

- 6. If the region bounded by $y = 3 + 2x x^2$ and x + y = 3 is rotated about the y-axis, then the resulting solid will have volume
 - A. $\frac{16}{3}$ π
 - B. $\frac{9}{2}$ π
 - C. $\frac{27}{2}$ π
 - D. 8π
 - E. 9π

7. Evaluate the integral

$$\int_0^{\pi} t \sin 5t dt$$

- A. $-\frac{1}{25}$
- B. $\frac{\pi}{5}$
- C. $\frac{1}{25}$
- D. $\frac{1}{25} \frac{\pi}{5}$
- E. $-\frac{\pi}{5}$

8. Evaluate the integral

$$\int_0^{\pi/4} \tan^2 x dx$$

- A. $1 + \frac{\pi}{4}$
- B. $-\frac{\pi}{4}$
- C. $\frac{\sqrt{2}}{2} \frac{\pi}{4}$
- D. $1 \pi/4$
- E. $\frac{\sqrt{2}}{2} + \frac{\pi}{4}$

9. After the trigonometric substitution $x = 4 \sin \theta$, the integral

$$\int_0^{2\sqrt{3}} \frac{x^3}{\sqrt{16 - x^2}} \, dx$$

is transformed into the following integral:

A.
$$\int_0^{\pi/3} 4^3 \sin^3 \theta d\theta$$

B.
$$\int_0^{\frac{\pi}{3}} \frac{4^2 \sin^3 \theta}{\cos \theta} \ d\theta$$

C.
$$\int_0^{\pi/6} 4^3 \sin^3 \theta d\theta$$

D.
$$\int_0^{\pi/6} \frac{4^2 \sin^3 \theta}{\cos \theta} \ d\theta$$

E.
$$\int_0^{\pi/3} 4^2 \sin^3 \theta d\theta$$

10. Evaluate

$$\int \frac{x^2 + 2x + 5}{x^2 + 1} dx$$

A.
$$x + (2x + 4) \tan^{-1} x + C$$

B.
$$x + \ln(x^2 + 1) + 4\tan^{-1}x + C$$

C.
$$(x^2 + 2x + 5) \tan^{-1} x + C$$

D.
$$x + 2x \ln(x^2 + 1) + 4 \tan^{-1} x + C$$

E.
$$x + 2\ln(x^2 + 1) + 4\tan^{-1}x + C$$

11. Which of the following integrals converge?

- (I) $\int_{-\infty}^{0} \frac{1}{2x-5} dx$
- (II) $\int_2^3 \frac{1}{\sqrt{3-x}} \, dx$
- (III) $\int_0^\infty \frac{x}{x^3 + 1} \ dx$
 - A. All of them
 - B. (I) and (II) only
 - C. (II) and (III) only
 - D. (I) and (III) only
 - E. none

12. Let $(\overline{x}, \overline{y})$ be the centroid of the region bounded by the curves y = 1/x, y = 0, x = 1, x = 2. Then the value of \overline{x} is given by

- A. 1
- B. 3/2
- C. $\ln 2$
- $D. \ \frac{1}{4 \ln 2}$
- E. $\frac{1}{\ln 2}$

- 13. If $a = \lim_{n \to \infty} \cos(\frac{n}{2})$ and $b = \lim_{n \to \infty} \cos(\frac{2}{n})$, then
 - A. a = 0 and b = 1
 - B. a = 1 and b = 0
 - C. a = 1 and b does not exist
 - D. a does not exist and b = 1
 - E. Neither a nor b exists.

- 14. Find the sum of the series $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{3^n}$ and find the set of values for which your answer is valid.
 - A. $f(x) = \frac{x}{3-x}$ for -3 < x < 3
 - B. $f(x) = \frac{x}{3-x}$ for $-3 \le x < 3$
 - C. $f(x) = \frac{1}{3-x}$ for -3 < x < 3
 - D. $f(x) = \frac{1}{3-x}$ for $-3 \le x < 3$
 - E. $f(x) = \frac{1}{3-x}$ for $x \neq 3$

15.
$$\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}$$
 is

- A. Convergent by the integral test
- B. Convergent by the ratio test
- C. Divergent by the ratio test
- D. Divergent by the limit comparison test
- E. Divergent by the root test

- 16. If we know that $\ln 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$, what is the least number of terms of the series to use to be sure that we have approximated $\ln 2$ to within 10^{-2} ?
 - A. 9
 - B. 99
 - C. 999
 - D. 9,999
 - E. 999,999

- 17. Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{10^n x^n}{n^3}$.
 - A. $(-\infty, \infty)$
 - B. (-10, 10)
 - C. $\left(-\frac{1}{10}, \frac{1}{10}\right)$
 - D. $\left[-\frac{1}{10}, \frac{1}{10} \right)$
 - $E. \left[-\frac{1}{10}, \frac{1}{10} \right]$

- 18. Find a power series representation for $f(x) = \frac{x}{2x^2 + 1}$ and find its radius of convergence R.
 - A. $f(x) = \sum_{n=0}^{\infty} (-1)^n 2^n x^{2n+1}$, $R = \frac{1}{2}$
 - B. $f(x) = \sum_{n=0}^{\infty} (-1)^n 2^n x^{2n+1}$, $R = \frac{1}{\sqrt{2}}$
 - C. $f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{2^n}$, R = 2
 - D. $f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2^n}, R = 2$
 - E. $f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2^n}, R = \sqrt{2}$

- 19. The first three terms of the McLaurin series of $f(x) = x(1-x^2)^{-\frac{1}{2}}$ are
 - A. $1 + \frac{1}{2} x^2 + \frac{3}{8} x^4$
 - B. $1 \frac{1}{2} x^2 + \frac{3}{8} x^4$
 - C. $x + \frac{1}{2} x^3 + \frac{3}{8} x^5$
 - D. $x \frac{1}{2} x^3 + \frac{3}{8} x^5$
 - E. $x + \frac{1}{2} x^3 \frac{1}{8} x^5$

- 20. The Taylor series of $f(x) = \cos x$ at $a = \frac{\pi}{2}$ is
 - A. $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{(x-\frac{\pi}{2})^{2n+1}}{(2n+1)!}$
 - B. $\sum_{n=0}^{\infty} (-1)^n \frac{(x \frac{\pi}{2})^{2n}}{(2n)!}$
 - C. $\sum_{n=0}^{\infty} (-1)^n \frac{(x-\frac{\pi}{2})^{2n+1}}{(2n+1)!}$
 - D. $\sum_{n=0}^{\infty} (-1)^n \frac{(x+\frac{\pi}{2})^{2n}}{(2n)!}$
 - E. $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{(x+\frac{\pi}{2})^{2n+1}}{(2n+1)!}$

- 21. $\lim_{x \to 0} \frac{\cos x 1 + \frac{x^2}{2}}{x^4} =$
 - A. 0
 - B. 1/4
 - C. 1/12
 - D. 1/24
 - E. None of the above

22. Find the points on the curve

$$x = 2t^3 + 3t^2 - 12t, \ y = 2t^3 + 3t^2 + 1$$

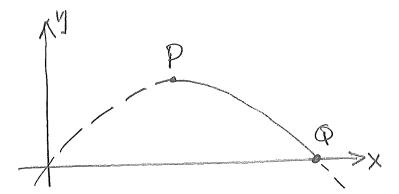
where the tangent is horizontal.

- A. (20, -3) and (-7, 6)
- B. (-2,0) and (1,0)
- C. (0,1) and (13,2)
- D. (0,0)
- E. (0, -2) and (0, 1)

23. Identify the curve. Hint: Find a Cartesian equation for it.

$$r = 3\sin\theta$$

- A. a circle of radius $\sqrt{3}$ centered at (0,0)
- B. a parabola with vertex (0,0)
- C. a half-line through (0,0)
- D. a cycloid
- E. a circle of radius 3/2 centered at $(0, \frac{3}{2})$


24. For which values of t is the curve

$$x = t^3 - 12t, \quad y = t^2 - 1$$

concave upward?

- A. t < -2
- B. t < -2 or t > 2
- C. t > 2
- D. t > 4
- E. -2 < t < 2

25. A part of the curve x = 3t, $y = \sin 2t$ is sketched below, where P is the highest point on the arc shown. Then the length of the arc of the curve from P to Q is given by

A.
$$\int_{\pi/2}^{\pi} \sqrt{1 + 4\cos^2 2t} \ dt$$

B.
$$\int_{\pi/4}^{\pi/2} \sqrt{9 + 4\cos^2 2t} \ dt$$

C.
$$\int_{\frac{\pi}{2}}^{\pi} \sqrt{9 + \cos^2 2t} \ dt$$

D.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt{1 + 4\cos^2 2t} \ dt$$

E.
$$\int_{0}^{\pi} \sqrt{9 + \cos^2 2t} \ dt$$