1. Which of the following series converges?

(I)
$$\sum_{n=1}^{\infty} \frac{2}{n^{0.99}}$$

(II) $\sum_{n=1}^{\infty} \frac{1-2\sqrt{n}}{n^2}$
(III) $\sum_{n=1}^{\infty} \frac{1-2\sqrt{n}}{n^{3/2}}$

- A. All of them.
- B. (II) only.
- C. (I) and (II) only.
- D. (II) and (III) only.
- E. (I) only.
- 2. Which of the following statements is true?
 - (I) If $0 \le a_n \le b_n$ and $\sum b_n$ converges, then $\sum a_n$ converges.
 - (II) If $a_n \ge b_n \ge 0$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.
 - (III) If $0 \le a_n \le b_n$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.
 - A. (I) only.
 - B. (II) only.
 - C. (I) and (III) only.
 - D. (II) and (III) only.
 - E. (I) and (II) only.

 $\mathrm{MA}\ 16200$

3. Which of the following series converges?

(I)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 1}}$$

(II)
$$\sum_{n=1}^{\infty} \frac{n+3^n}{n+5^n}$$

(III)
$$\sum_{n=1}^{\infty} \frac{n+3}{(n+2)^3}$$

- A. All of them.
- B. (I) and (II) only.
- C. (I) and (III) only.
- D. (II) and (III) only.
- E. (I) only.
- 4. Which of the following statements is correct (only one of them is correct):
 - A. The series $\sum_{n=1}^{\infty} \sin \frac{0.1}{n^2}$ converges, by the limit comparison test. B. The series $\sum_{n=1}^{\infty} \sin \frac{0.1}{n^2}$ converges, because $\sin \frac{0.1}{n^2} \to 0$, as $n \to \infty$. C. The series $\sum_{n=1}^{\infty} \sin \frac{0.1}{n^2}$ is an alternating series, and therefore is convergent. D. The series $\sum_{n=1}^{\infty} \sin \frac{0.1}{n^2}$ diverges by the ratio test. E. $\sum_{n=1}^{\infty} \sin \frac{0.1}{n^2}$ diverges, because the integral $\int_{1}^{\infty} \sin x \, dx$ is divergent.

5. For the series

(I)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$$

(II) $\sum_{n=1}^{\infty} (-1)^n \frac{e^{\frac{1}{n}}}{n^3}$

- A. (I) and (II) are absolutely convergent.
- B. (I) is divergent, (II) is absolutely convergent.
- C. (I) is conditionally convergent, (II) is absolutely convergent.
- D. (I) and (II) are conditionally convergent.
- E. (I) is divergent, (II) is conditionally convergent.

6. The series
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n^n}$$

- A. Converges absolutely by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^n}$.
- B. Diverges since $\lim_{n \to \infty} \frac{(-2)^n}{n^n} \neq 0.$
- C. Converges absolutely by the root test.
- D. Diverges by the ratio test.
- E. Diverges by the root test.

7. Consider the following series:

I.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+2}$$

II.
$$\sum_{n=1}^{\infty} \frac{1}{n+3^n}$$

III.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2+2}$$

- A. They all converge.
- B. Only (I) and (II) converge.
- C. Only (I) and (III) converge.
- D. Only (II) and (III) converge.
- E. They all diverge.
- 8. Consider the following series:

I.
$$\sum_{n=1}^{\infty} \frac{n^2}{n+1} \frac{1}{2^n}$$

II.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{n^2}$$

III.
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2}$$

- A. They all converge.
- B. Only (I) and (II) converge.
- C. Only (I) and (III) converge.
- D. Only (II) and (III) converge.
- E. They all diverge.

- 9. Find the radius of convergence of $\sum_{n=0}^{\infty} \sqrt{n} 2^n x^n$.
 - A. 0
 - B. $\frac{1}{2}$
 - C. 1
 - D. 2
 - E. ∞

- 10. Given that the radius of convergence of $\sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^n}{2n+1}$ is 1, find the interval of convergence.
 - A. (2, 4)
 - B. [2, 4]
 - C. [2, 4)
 - D. (2, 4]
 - E. None of the above.

Exam 3

Spring 2009

11. Find a power series for the indefinite integral $F(t) = \int \frac{t}{1-t^8} dt$ and find its radius of convergence R.

- A. $F(t) = C + \sum_{n=0}^{\infty} \frac{t^{8n+2}}{8n+2}, R = 1$ B. $F(t) = C + \sum_{n=0}^{\infty} \frac{t^{8n+2}}{8n+2}, R = \infty$ C. $F(t) = C + \sum_{n=0}^{\infty} t^{8n+1}, R = 1$ D. $F(t) = C + \sum_{n=0}^{\infty} t^{8n+1}, R = \infty$
- E. None of the above.
- 12. Find the Taylor series for $f(x) = e^{2x}$ centered at a = 3.

A.
$$\sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$$

B.
$$\sum_{n=0}^{\infty} \frac{2^n}{n!} e^3 (x+3)^n$$

C.
$$\sum_{n=0}^{\infty} \frac{2^n}{n!} e^6 (x+3)^n$$

D.
$$\sum_{n=0}^{\infty} \frac{2^n}{n!} e^3 (x-3)^n$$

E.
$$\sum_{n=0}^{\infty} \frac{2^n}{n!} e^6 (x-3)^n$$