Name:	 	
Student ID:		 <u> </u>
Lecturer:	 	 ·
Recitation Instructor:	 ·	
Recitation Time:		

Instructions:

- 1. This package contains 11 problems worth 9 points each.
- 2. Please supply <u>all</u> information requested above. You get 1 point for supplying all information correctly.
- 3. Work only in the space provided, or on the backside of the pages. Circle your choice for each problem in this booklet.
- 4. No books, notes, or calculator, please.

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n, \quad |x| < 1$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

$$(1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n, \quad |x| < 1$$

- 1. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$.
 - A. Both series are conditionally convergent.
 - B. Both series are absolutely convergent.
 - C. The first is conditionally convergent, the second is absolutely convergent.
 - D. The first is absolutely convergent, the second is conditionally convergent.
 - E. The first is divergent, the second is absolutely convergent.

2. $\sum_{k=1}^{\infty} \frac{3^k}{2k^2 \cdot 2^k}$ is

- A. convergent by comparison with $\sum_{k=1}^{\infty} \frac{3^k}{2^k}$
- B. divergent by comparison with $\sum_{k=1}^{\infty} \frac{3^k}{2^k}$
- C. divergent by ratio test
- D. convergent by ratio test
- E. the ratio test, applied to the series, is inconclusive

- 3. What is the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{2 \cdot 4 \cdot 6 \cdot (2n)}$?
 - A. -1
 - B. 0
 - C. 1
 - D. 2
 - (E. ∞)

- 4. Given that the series $\sum_{k=1}^{\infty} \frac{x^k}{k2^k}$ has radius of convergence 2, what is its interval of convergence?
 - A. (-2,2)
 - B. [-2,2)
 - C. (-2, 2]
 - D. [-2, 2]
 - E. None of the above.

5. The function $\frac{x^2}{1+2x}$ is represented by the power series

A.
$$\sum_{n=0}^{\infty} (-1)^n 2^n x^{n+2}$$

B.
$$\sum_{n=1}^{\infty} n^2 x^n$$

C.
$$\sum_{n=1}^{\infty} (-1)^n 2n^2 x^n$$

D.
$$\sum_{n=0}^{\infty} (-\frac{1}{2})^n x^{2n}$$

E.
$$\sum_{n=0}^{\infty} n(-\frac{1}{2})^n x^{2n}$$

6. If
$$f(x) = \sum_{n=1}^{\infty} \frac{x^{2n+1}}{2n+1}$$
, then $\int_{0}^{\frac{1}{2}} f(x)dx =$

A.
$$\sum_{n=1}^{\infty} \frac{(-\frac{1}{2})^n}{2n+1}$$

B.
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)(2n+2)2^{2n+2}}$$

C.
$$\sum_{n=1}^{\infty} \frac{1}{(n^2+n)2^{2n+1}}$$

D.
$$\sum_{n=1}^{\infty} \ln(2n+1)x^{2n+1}$$

E. The integral is divergent

7. If e^x is expanded as a power series of the form $\sum_{n=0}^{\infty} c_n(x-1)^n$, then $c_4 =$

A.
$$\frac{1}{4!}$$

B.
$$\frac{e^4}{4!}$$

C.
$$\frac{e}{4!}$$

D.
$$\frac{-1}{4!}$$

E.
$$\frac{e^{-1}}{4!}$$

8. $x \sin(x^2) =$

A.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+2}}{(2n+1)!}$$

B.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+2}}{(2n)!}$$

C.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{(2n+1)!}$$

D.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{(2n)!}$$

E.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+3}}{(2n+1)!}$$

- 9. Find the first three terms of the Maclaurin series of $f(x) = \sqrt{4 + x^2}$.
 - A. $1 + \frac{1}{4}x + \frac{1}{64}x^2$
 - B. $2 + \frac{1}{4}x \frac{1}{64}x^2$
 - C. $1 + \frac{1}{4}x^2 + \frac{1}{64}x^4$
 - D. $2 + \frac{1}{4}x^2 \frac{1}{64}x^4$
 - E. $2 + \frac{1}{4}x^2 + \frac{1}{64}x^4$

- 10. How many terms of the Maclaurin series for ln(1+x) do you need to use to estimate ln(1.2) to within 0.001?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
 - E. 6

11. Find a Cartesian equation of the curve with parametric equations $x=2(\cos\theta-1),$ $y=\sin\theta+1.$

A.
$$(x+2)^2 + 4(y-1)^2 = 4$$

B.
$$(x+2)^2 + 2(y-1)^2 = 1$$

C.
$$(x+2) + (y-1)^2 = 1$$

D.
$$(x+2) + 2(y-1)^2 = 2$$

E.
$$(x+2)^2 + 2(y-1) = 4$$