MA 16200 EXAM 2 Green March 7, 2019

NAME ______YOUR TA'S NAME _____

STUDENT ID #	RECITATION TIME
Write the following in the TE below the boxes)	ST/QUIZ NUMBER boxes: 00 (and blacken in the appropriate digits
name and the $\underline{\text{COURSE}}$ numb	ne mark—sense sheet (answer sheet).On the mark—sense sheet, fill in your <u>TA</u> 's er. Fill in your <u>NAME</u> and <u>STUDENT IDENTIFICATION NUMBER</u> and
blacken in the appropriate spa section number, ask your TA. S	ces. Fill in your four-digit <u>SECTION NUMBER</u> . If you do not know your Sign the mark–sense sheet.
	worth 8 points (you will automatically earn 4 points for taking the exam). orrect answer in the spaces provided for questions 1–12. Do all your work in
	ck of the test pages for scrap paper. Turn in both the mark–sense sheet and
booklet. You may not leave the	50, you may leave the room after turning in the scantron sheet and the exam room before 8:20. <u>If you don't finish before 8:50, you MUST REMAIN SEATED</u> its your scantron sheet and your exam booklet.
	EXAM POLICIES
1. Students may not op	en the exam until instructed to do so.
2. Students must obey	the orders and requests by all proctors, TAs, and lecturers.
3. No student may leav	e in the first 20 min or in the last 10 min of the exam.
they should not even	ators, or any electronic devices are not allowed on the exam, and be in sight in the exam room. Students may not look at anybody not communicate with anybody else except, if they have a question, curer.
•	the students have to put down all writing instruments and remain the TAs will collect the scantrons and the exams.
ž	se rules and any act of academic dishonesty may result in severe ally, all violators will be reported to the Office of the Dean of
I have read and understan	d the exam rules stated above:
STUDENT NAME:	
STUDENT SIGNATURE:	

1.
$$\int \frac{x+13}{x^2+5x-6} dx =$$

A.
$$\ln \left| \frac{x-1}{(x+6)^2} \right| + C$$

B.
$$\ln \left| \frac{x+3}{x+2} \right| + C$$

C.
$$\ln \left| \frac{2(x-1)}{x+6} \right| + C$$

D.
$$\ln \left| \frac{(x-1)^2}{x+6} \right| + C$$

E.
$$\ln \left| \frac{x+2}{x+3} \right| + C$$

$$2. \int \frac{2x^3 + 5x^2 + 8x + 4}{(x^2 + 2x + 2)^2} dx =$$

A.
$$\int \frac{2x+2}{x^2+2x+2} dx + \int \frac{2x+1}{(x^2+2x+2)^2} dx$$

B.
$$\int \frac{2x+1}{x^2+2x+2} dx + \int \frac{2x+2}{(x^2+2x+2)^2} dx$$

C.
$$\int \frac{2x}{x^2 + 2x + 2} dx + \int \frac{2x + 1}{(x^2 + 2x + 2)^2} dx$$

D.
$$\int \frac{2x}{x^2 + 2x + 2} dx + \int \frac{2x + 2}{(x^2 + 2x + 2)^2} dx$$

E.
$$\int \frac{2x+1}{x^2+2x+2} dx + \int \frac{2x}{(x^2+2x+2)^2} dx$$

3. The curve $y = \sin x$, $0 \le x \le \frac{\pi}{2}$, is rotated around the x-axis to generate a surface S. Which of the following formulas represents the surface area of S?

A.
$$\int_{0}^{\frac{\pi}{2}} 2\pi \sin x \sqrt{1 + \cos^2 x} \ dx$$

B.
$$\int_0^1 2\pi y \sqrt{1 + (\cos^{-1} y)^2} dy$$

C.
$$\int_0^1 2\pi \sin^{-1} y \sqrt{1 + \frac{1}{1 - y^2}} \, dy$$

D.
$$\int_0^{\frac{\pi}{2}} 2\pi x \sqrt{1 + \cos^2 x} \ dx$$

E.
$$\int_0^{\frac{\pi}{2}} 2\pi \sin x \sqrt{1 + \frac{1}{1 - x^2}} dx$$

$$4. \int_0^{2\sqrt{2}} \frac{x^2 dx}{\sqrt{16 - x^2}} =$$

- A. 2π
- B. $2\pi 2$
- C. $2\pi + 2$
- D. $2\pi 4$
- E. $2\pi + 4$

- $5. \int_{\frac{1}{12}}^{\frac{1}{4}} \frac{12 dt}{\sqrt{t} + 4t\sqrt{t}} =$
 - A. 6π
 - B. 4π
 - C. π
 - D. 3π
 - E. 2π

6. Find the length of the curve given by

$$x^{2/3} + y^{2/3} = 1$$

- for $0 \le x \le 1$ and $0 \le y \le 1$.

 - A. $\frac{4}{3}$ B. $\frac{8}{5}$ C. $\frac{13}{9}$ D. $\frac{3}{2}$ E. $\frac{5}{3}$

- 7. Which expression represents the y-coordinate of the centroid of the region of the plane bounded by $y=x^2$ and $x=y^2$?
 - A. $\frac{\int_0^1 (x x^{3/2}) dx}{\int_0^1 (\sqrt{x} x^2) dx}$
 - B. $\frac{\int_0^1 (x x^{3/2}) dx}{2 \int_0^1 (\sqrt{x} x^2) dx}$
 - C. $\frac{\int_0^1 (x^3 x^{3/2}) dx}{\int_0^1 (\sqrt{x} x^2) dx}$
 - D. $\frac{\int_0^1 (x^{3/2} x^3) dx}{2 \int_0^1 (\sqrt{x} x^2) dx}$
 - E. $\frac{\int_0^1 (x x^4) dx}{2 \int_0^1 (\sqrt{x} x^2) dx}$

- 8. $\int_0^1 \frac{1}{\sqrt{x}} \, dx$
 - A. 1
 - B. $\frac{2}{3}$
 - C. 2
 - D. $\frac{1}{2}$
 - E. Divergent

9. Which statement is true for the following sequence?

$$a_n = \sqrt{n+1} - \sqrt{n}$$

where $n = 1, 2, \dots$

- A. The sequence is divergent and decreasing.
- B. The sequence is divergent and not monotonic.
- C. The sequence is convergent and not monotonic.
- D. The sequence is divergent and increasing.
- E. The sequence is convergent and decreasing.

- 10. $\frac{1}{e} + \frac{1}{e^2} + \frac{1}{e^3} + \frac{1}{e^4} + \dots$
 - A. converges to $\frac{e}{1-e}$
 - B. converges to $\frac{1}{1-e}$
 - C. diverges
 - D. converges to $\frac{e}{e-1}$
 - E. converges to $\frac{1}{e-1}$

- 11. Only one of these series converges. Which one?
 - $A. \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
 - $B. \sum_{n=2}^{\infty} \frac{e^n}{\ln n}$
 - C. $\sum_{n=1}^{\infty} \frac{2^n}{n+3^n}$
 - $D. \sum_{n=2}^{\infty} \frac{1}{n \ln n}$
 - E. $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$

12. Assume each a_n is positive. Which one of the following conditions guarantees that the series

$$\sum_{n=1}^{\infty} a_n \text{ diverges?}$$

- A. $\lim_{n \to \infty} \frac{a_n}{1/2^n} = 1$
- B. $a_n > \frac{1}{n^2}$ for all n
- C. $a_n < \frac{1}{n}$ for all n
- D. $\lim_{n \to \infty} \frac{a_n}{\sqrt{2^n}} = 1$
- E. $\lim_{n \to \infty} \frac{a_n}{1/n^2} = \infty$