MA162 — EXAM II — SPRING 2017 — MARCH 9, 2017 TEST NUMBER 01

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. MARK YOUR TEST NUMBER ON YOUR SCANTRON
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 7 different test pages (including this cover page).
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. There are 14 problems and the number of points each problem is worth is indicated next to the problem number. The maximum possible score is 100 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. If you do not finish your exam in the first 50 minutes, you must wait until the end of the exam period to leave the room.
- 9. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have doubts, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
- 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, given it to your instructor and left the room.
- 5. Do not consult notes or books.
- 6. **Do not handle** phones or cameras, calculators or any electronic device until after you have finished your exam, given it to your instructor and left the room.
- 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
- 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT NAME:
STUDENT SIGNATURE:
STUDENT ID NUMBER:
SECTION NUMBER AND RECITATION INSTRUCTOR:

- 1. (8 points) Compute $\int_0^1 xe^{2x} dx$.
 - A. $\frac{1+e^2}{4}$
 - B. $\frac{1+3e^2}{2}$
 - C. $1 + 2e^2$
 - D. $1 + 3e^2$
 - E. $\frac{1+2e^2}{4}$

- **2.** (8 points) Compute $\int_0^{\frac{\pi}{4}} 5(\sec^4 x)(\tan^2 x) \ dx$.

 - A. $\frac{3}{4}$ B. $\frac{3}{8}$ C. $\frac{8}{3}$ D. $\frac{8}{5}$ E. $\frac{5}{8}$

3. (8 points) If we use a trigonometric substitution to evaluate $\int \frac{\sqrt{x^2+4}}{x^2} dx$ the integral becomes

A.
$$\int \frac{\sec \theta}{2\tan^2 \theta} d\theta$$

B.
$$\int \frac{\tan \theta}{4 \sec^2 \theta} \ d\theta$$

C.
$$\int \frac{\sec^2 \theta}{\tan \theta} \ d\theta$$

D.
$$\int \frac{\sec^3 \theta}{\tan^2 \theta} d\theta$$

E.
$$\int \frac{\tan^2 \theta}{\sec \theta} \ d\theta$$

4. (8 points) Compute $\int_0^{\frac{1}{2}} \frac{x^3}{(1-x^2)^{\frac{3}{2}}} dx$.

A.
$$\frac{5\sqrt{3} - 8}{6}$$

B.
$$\frac{4\sqrt{3}-5}{6}$$

C.
$$\frac{4\sqrt{3}-3}{6}$$

D.
$$\frac{6\sqrt{3}-7}{6}$$

E.
$$\frac{7\sqrt{3}-12}{6}$$

- 5. (8 points) Find the length of the curve $y = \frac{3}{8} (x^{4/3} 2x^{2/3})$ for $0 \le x \le 1$. The arc-length formula holds in this case.
 - A. $\frac{5}{8}$
 - B. $\frac{13}{8}$ C. $\frac{7}{8}$ D. $\frac{9}{8}$

 - E. $\frac{11}{8}$

- **6. (8 points)** Which of the following improper integrals are convergent?

 - I. $\int_{0}^{\infty} xe^{-x^{2}} dx$ II. $\int_{0}^{\infty} \frac{1}{1+x^{2}} dx$ III. $\int_{3}^{\infty} \frac{1}{2-x} dx$

- A. I and II only
- B. II and III only
- C. II only
- D. None of them
- E. All of them

- 7. (8 points) Compute the integral $\int_1^2 \frac{1}{x^2 + 4x + 3} dx$.
 - $A. \ \frac{1}{2} \ln(\frac{3}{4})$
 - B. $\frac{1}{2}\ln(\frac{2}{5})$
 - $C. \ \frac{1}{2} \ln(\frac{6}{5})$
 - D. $\frac{1}{2}\ln(\frac{3}{5})$
 - E. $\frac{1}{2}\ln(\frac{3}{8})$

8. (8 points) In order to evaluate the integral $\int \frac{4x^3 - 5x^2 + 8x - 10}{(x+2)(x-2)^3} dx$, how do you express the integrand as sum of partial fractions?

A.
$$\frac{A}{x+2} + \frac{B}{x-2} + \frac{C}{(x-2)^2} + \frac{D}{(x-2)^3}$$

$$B. \ \frac{A}{x+2} + \frac{B}{x-2}$$

C.
$$\frac{A}{x+2} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$$

D.
$$\frac{A}{x+2} + \frac{B}{x-2} + \frac{C}{(x-2)^2} + \frac{D}{(x+2)^2}$$

E.
$$\frac{A}{x+2} + \frac{B}{(x-2)^3}$$

- 9. (8 points) The area of the region of the plane bounded by the curves $y = 4x x^2$ and $y = x^2$ is equal to $\frac{8}{3}$. The y-coordinate of its centroid is equal to
 - A. 3
 - B. $\frac{3}{2}$
 - C. $\frac{4}{3}$
 - D. $\frac{3}{4}$
 - E. 2

- **10.** (8 points) Compute $\lim_{n \to \infty} \left(\frac{n^2 + 2n 4}{2n 5} \frac{n}{2} \right)$
 - A. $\frac{3}{4}$
 - B. $\frac{9}{4}$
 - C. $\frac{7}{4}$
 - D. 0
 - E. ∞

- 11. (8 points) The sum of the series $\sum_{n=1}^{\infty} \frac{1+2^n}{5^n}$ is equal to
 - A. $\frac{6}{5}$
 - B. $\frac{9}{5}$
 - C. $\frac{11}{12}$
 - D. $\frac{12}{5}$
 - E. $\frac{8}{9}$
- 12. (4 points) The series $\sum_{n=1}^{\infty} \frac{4n+5}{n^2}$ converges by the integral test
 - A. True
 - B. False
- 13. (4 points) If the series $\sum_{k=1,000,000,000}^{\infty} a_k$ diverges, one cannot say whether the series $\sum_{k=1}^{\infty} a_k$ converges or diverges.
 - A. True
 - B. False
- 14. (4 points) The series $\sum_{n=1}^{\infty} \cos(\frac{1}{n})$ converges.
 - A. True
 - B. False