
1. The equation $x^2 - 2x + y^2 + 4y + z^2 = 0$ represents a sphere with

- A. center (-1, 2, 0) and radius 5
- B. center (1, -2, 0) and radius $\sqrt{5}$
- C. center (1, -2, 0) and radius 5
- D. center (-1, 2, 0) and radius $\sqrt{5}$
- E. This is not an equation of a sphere

2. In the parallelogram below, $\overrightarrow{AB} - \overrightarrow{BD}$ equals

- A. \overrightarrow{CB}
- B. \overrightarrow{AD}
- C. \overrightarrow{BC}
- D. \overrightarrow{DA}
- E. \overrightarrow{CA}

3. Let $\vec{\mathbf{u}}$ be a unit vector, and let $\vec{\mathbf{u}} \cdot \vec{\mathbf{a}} = 5$. If the angle between $\vec{\mathbf{u}}$ and $\vec{\mathbf{a}}$ is $\pi/4$, find $|\vec{\mathbf{a}}|$.

- A. $|\vec{\bf a}| = 5$
- B. $|\vec{\bf a}| = 5/\sqrt{2}$
- C. $|\vec{\bf a}| = \sqrt{2}/5$
- $D. |\vec{\mathbf{a}}| = 5\sqrt{2}$
- $E. |\vec{\mathbf{a}}| = \frac{1}{5\sqrt{2}}$

4. Which of the following expressions are meaningful for vectors $\vec{\mathbf{a}}, \vec{\mathbf{b}},$ and $\vec{\mathbf{c}}$?

- (a) $\vec{a} \cdot (\vec{b} \times \vec{c})$
- (b) $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \cdot \vec{\mathbf{c}})$
- (c) $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$
- (d) $(\vec{a} \cdot \vec{b}) \times \vec{c}$
- (e) $(\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) \times (\vec{\mathbf{c}} \cdot \vec{\mathbf{d}})$
- (f) $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot (\vec{\mathbf{c}} \times \vec{\mathbf{d}})$

- A. (a), (c), and (e) only
- B. (b) and (c) only
- C. (a), (c), and (f) only
- D. (c) and (f) only
- E. all of them

- 5. Find $\vec{i} \times (\vec{j} \times \vec{i})$.
 - A. $\vec{\mathbf{j}}$
 - B. $-\vec{\mathbf{j}}$
 - C. $\vec{0}$
 - D. \vec{k}
 - E. $-\vec{k}$

- 6. Find the area of the region enclosed by the curves $x = y^2$ and x + y = 6.
 - A. 20
 - B. 25
 - C. 125/6
 - D. 127/6
 - E. 151/6

7. If the region bounded by the curve $y=1-x^2$ and the x-axis is rotated about the line x=-1, then the solid generated will have volume

A.
$$\int_{-1}^{1} \pi (1-x^2)^2 dx$$

B.
$$\int_{-1}^{1} 2\pi (1-x^2)^2 dx$$

C.
$$\int_{-1}^{1} \pi(x+1)(1-x^2)dx$$

D.
$$\int_{-1}^{1} 2\pi (x+1)(1-x^2)dx$$

E.
$$\int_{0}^{1} \pi (1-y) dy$$

8. If the region in the first quadrant bounded by $y=x^2, y=2$ and x=0 is rotated about the x-axis, then the resulting solid will have volume

A.
$$\int_{0}^{\sqrt{2}} \pi (4-x^4) dx$$

B.
$$\int_0^2 \pi (4 - x^4) dx$$

C.
$$\int_0^{\sqrt{2}} \pi (2 - x^2)^2 dx$$

D.
$$\int_0^2 \pi (2-x^2)^2 dx$$

E.
$$\int_0^2 2\pi x (2-x^2) dx$$

- 9. A cyclindrical tank, 2 ft. in diameter and 4 ft. tall, is full of water. How much work is done in pumping the water to the top of the tank? (Assume the water weighs 62.5 lb/ft³.)
 - A. 200π ft-lb
 - B. 300π ft-lb
 - C. 400π ft-lb
 - D. 500π ft-lb
 - E. 1000π ft-lb

- 10. Find the average value of the function $f(x) = x^5$ on the interval [0, 2].
 - A. $\frac{2^6}{2}$
 - B. $\frac{2^6}{3}$
 - C. $\frac{2^6}{4}$
 - D. $\frac{2^6}{6}$
 - E. $\frac{2^6}{12}$

$$11. \int_0^2 x e^x dx =$$

- A. $2(e^2-1)$
- B. $e^2 1$
- C. $2e^2 1$
- D. $e^2 + 1$
- E. $2e^2 + 1$

$$12. \int_0^{\pi/4} \sec x \tan^3 x dx =$$

- A. $\frac{1}{4}$
- B. $2^{\frac{1}{2}} \frac{1}{2}$
- C. $2^{\frac{3}{2}} \frac{1}{3}$
- D. $2^{\frac{3}{2}} 2^{\frac{1}{2}} + \frac{1}{3}$
- E. $\frac{2^{\frac{3}{2}}}{3} 2^{\frac{1}{2}} + \frac{2}{3}$