- 1. What does the pair of equations x = 2, y = 7 represent in \mathbb{R}^3 ?
- A. a point.
- B. a line.
- C. a plane.
- D. a cone.
- E. two planes.

2. Find the radius of the sphere

$$x^2 + y^2 + z^2 - 2x + 4y - 6z = 7.$$

- A. 1
- B. $\sqrt{5}$
- C. $\sqrt{11}$
- D. $\sqrt{21}$
- E. $\sqrt{23}$

3. Let $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j} - \mathbf{k}$ and $\mathbf{b} = 4\mathbf{i} + 2\mathbf{j}$. Find $|\mathbf{a} - \mathbf{b}|$.

- A. $\sqrt{10}$
- B. $\sqrt{14}$
- C. $\sqrt{17}$
- D. $\sqrt{20}$
- E. $\sqrt{30}$

4. Find a unit vector with direction opposite that of < 2, 4, -4 >.

A.
$$\langle 2, 4, -4 \rangle$$

A.
$$\langle 2, 4, -4 \rangle$$

B. $\left\langle \frac{2}{\sqrt{10}}, \frac{4}{\sqrt{10}}, \frac{-4}{\sqrt{10}} \right\rangle$

C.
$$\left\langle \frac{-2}{\sqrt{10}}, \frac{-4}{\sqrt{10}}, \frac{4}{\sqrt{10}} \right\rangle$$

D.
$$\left\langle \frac{1}{3}, \frac{2}{3}, \frac{-2}{3} \right\rangle$$

E.
$$\left\langle \frac{-1}{3}, \frac{-2}{3}, \frac{2}{3} \right\rangle$$

5. Let $\mathbf{a} = <1, 2, 3>$ and $\mathbf{b} = <2, -1, 1>$. Find $\mathbf{a} \times \mathbf{b}$.

A.
$$<-5,-5,5>$$

B.
$$<1,1,-1>$$

C.
$$<5,5,-5>$$

D.
$$< -1, -1, 1 >$$

E.
$$< -1, -7, 3 >$$

6. Let $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \mathbf{j} + \mathbf{k}$. Find $\text{proj}_{\mathbf{a}}\mathbf{b}$,

A.
$$\frac{3}{2}\mathbf{j} + \frac{3}{2}\mathbf{k}$$

$$B. \ \frac{1}{2}\mathbf{j} + \frac{1}{2}\mathbf{k}$$

$$C. \quad \frac{1}{2}\mathbf{i} + \mathbf{j} + \frac{1}{2}\mathbf{k}$$

D.
$$\frac{1}{3}i + \frac{2}{3}j + \frac{1}{3}k$$

$$E. \frac{1}{4}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{1}{4}\mathbf{k}$$

7. Let $\mathbf{a}=<4,2,3>$ and $\mathbf{b}=<-2,1,2>$. Find $\mathbf{a}\cdot\mathbf{b}.$

- A. 11
- B. < 2, 3, 5 >
- C. 0
- D. 8
- E. $\frac{3}{2}$
- 8. Let $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} 2\mathbf{j} + \mathbf{k}$. Find $\cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} .
 - A. $\frac{-1}{2\sqrt{5}}$
 - B. $\frac{-7}{3\sqrt{6}}$
 - C. $\frac{\sqrt{53}}{3\sqrt{6}}$ D. $\frac{7}{3\sqrt{6}}$

 - $E. \frac{-1}{3\sqrt{6}}$
- 9. The area between the curves $y=x^2+2x$ and $y=x^3$ and between x=0 and x=2 is

- B. $\frac{4}{3}$ C. $\frac{5}{3}$
- D. $\frac{8}{3}$
- E. $\frac{10}{3}$

- 10. The area between the curves $y^2 = x 1$ and y = x 3 is
 - A. $\int_{-1}^{2} ((y+3) (y^2+1)) dy$
 - B. $\int_{-1}^{2} ((y^2+1)-(y+3)) dy$
 - C. $\int_{1}^{5} (\sqrt{x-1} (x-3)) dx$
 - D. $\int_{1}^{5} ((x-3) \sqrt{x-1}) dx$
 - E. $\int_{-1}^{2} ((x-3)-(x-1)) dy$
- 11. What is the distance between the points (x, x^2) and (x, x + 1) for x > 2?
 - A. $x^2 x 1$
 - B. $x + 1 x^2$
 - C. Cannot be determined.
- 12. The region bounded by $y = 1 x^2$ and y = 0 is rotated about the x-axis. Find the volume of the solid generated.
 - A. $\frac{3}{5}\pi$
 - B. $\frac{7}{15}\pi$
 - C. $\frac{11}{15}\pi$
 - D. $\frac{16}{15}\pi$
 - E. $\frac{21}{15}\pi$

13. The region bounded by $x = y^2$ and x = 2 is rotated about the line x = 3. Using the method of cylindrical shells, the volume of the solid generated is

A.
$$\int_0^2 2\pi \left(3x^{1/2} - x^{3/2}\right) dx$$

B.
$$\int_0^2 2\pi \left(6x^{1/2} - 2x^{3/2}\right) dx$$

C.
$$\int_0^2 2\pi (3-x) dx$$

D.
$$\int_0^2 2\pi (6x - 2x^2) dx$$

E.
$$\int_0^2 2\pi (3x - x^2) dx$$

14. A person slides a block of ice 20 feet along a horizontal floor by pulling with a force of 10 lbs at an angle of 45° to the floor. How much work is done by the person?

A.
$$\frac{200}{\sqrt{2}}$$
 ft-lbs

D.
$$\frac{400}{\sqrt{3}}$$
 ft-lbs

E.
$$\frac{400}{\sqrt{2}}$$
 ft-lbs

15. A water trough with triangular cross—section (see figure) is 2 feet high, 4 feet wide at the top and 10 feet long, and is full of water (62.5 lbs/ft³). Find the work done pumping all the water to the top of the tank.

C.
$$(62.5) \left(\frac{40}{3}\right)$$
 ft-lbs

D.
$$(62.5) \left(\frac{70}{3}\right)$$
 ft-lbs

E.
$$(62.5) \left(\frac{80}{3}\right)$$
 ft-lbs

$$16. \int_0^{\pi/6} x \sin x \ dx =$$

A.
$$\frac{1}{2} - \frac{\sqrt{3}}{12}\pi$$

B.
$$\frac{1}{2} - \frac{\sqrt{3}}{2}\pi$$

C.
$$\frac{\sqrt{3}}{2} - \frac{\pi}{12}$$

D.
$$\frac{\sqrt{3}}{2} + \frac{\pi}{12}$$

E.
$$\frac{1}{2} + \frac{\sqrt{3}}{6}\pi$$

17.
$$\int_0^{\pi/2} \sin^3 x \cos^2 x \ dx =$$

A.
$$\frac{4}{15}$$

B.
$$\frac{2}{15}$$

C.
$$\frac{-2}{15}$$

D.
$$\frac{-4}{15}$$

E.
$$\frac{1}{3}$$

		•			
		,			
:					
					•
	2				