MA 162	$\mathbf{Exam} \ 1$	Spring 2005
Name:		

Student ID:		
Lecturer:		
Recitation Instructor:		
Recitation Time:		

Instructions:

- 1. This package contains 12 problems worth 8 points each.
- 2. Please supply <u>all</u> information requested above and on the mark–sense sheet.
- 3. Work only in the space provided, or on the backside of the pages. Mark your answers clearly on the scantron. Also circle your choice for each problem in this booklet.
- 4. No books, notes, or calculator, please.

- 1. A unit vector in the same direction as the vector $4\mathbf{i} 2\mathbf{j} + 4\mathbf{k}$ is
 - A. $2\mathbf{i} \mathbf{j} + 2\mathbf{k}$.
 - B. $\frac{2}{5}\mathbf{i} \frac{1}{5}\mathbf{j} + \frac{2}{5}\mathbf{k}$.
 - C. $\frac{1}{3}$ **i** + $\frac{2}{3}$ **j** $\frac{1}{3}$ **k**.
 - D. $\frac{2}{3}\mathbf{i} \frac{1}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}$.
 - E. $-\frac{1}{5}\mathbf{i} + \frac{3}{5}\mathbf{j} + \frac{2}{5}\mathbf{k}$.

- 2. Which of the following statements are true? (a and b are vectors in space).
 - I. If \mathbf{a} and \mathbf{b} are orthogonal then $\mathbf{a} \cdot \mathbf{b} = 0$.
 - II. If **a** and **b** are orthogonal then $\mathbf{a} \times \mathbf{b} = 0$.
 - III. $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} and \mathbf{b} .

- A. only I
- B. only III
- C. only I and III
- D. only I and II
- E. all are true

- 3. The area of the parallelogram determined by the vectors $\langle 1, -2, 1 \rangle$ and $\langle 1, 2, 0 \rangle$ is
 - A. 21
 - B. $\sqrt{21}$
 - C. 18
 - D. $\sqrt{18}$
 - E. 6

- 4. The area of the region enclosed by the curve $y=e^x$ and the lines $y=-1-x,\,x=-1$ and x=0 is
 - A. $\frac{3}{2} \frac{1}{e}$
 - B. $\frac{2}{3e}$
 - C. $3 + \frac{2}{e}$
 - D. $2 \frac{1}{3e}$
 - E. $3 + \frac{1}{2e}$

5. The region enclosed by the curve $y = \sin x$ $(0 \le x \le \pi)$ and the x axis is rotated about the line y = -1. The volume of the solid thus generated is

A.
$$2\pi \int_0^{\pi} (\sin^2 x - 1)^2 dx$$

B.
$$\pi \int_0^{\pi} (1 + \sin^2 x) dx$$

$$C. 2\pi \int_0^\pi x(1+\sin x) dx$$

D.
$$2\pi \int_0^{\pi} x(1+\sin x)^2 dx$$

E.
$$\pi \int_0^{\pi} \left\{ (1 + \sin x)^2 - 1 \right\} dx$$

- 6. If the region under the curve $y = 3x^4$ and above the x axis, $-2 \le x \le 2$ is rotated about the y axis, the solid generated will have volume
 - A. 25π
 - B. 48π
 - C. 16π
 - D. 64π
 - E. 32π

- 7. If it takes 6 ft-lbs of work to stretch a spring from natural length to a distance 6 in beyond, how much work is required to stretch the spring from 6 in to 1 ft beyond natural length? (1 ft = 12 in)
 - A. 12 ft-lbs
 - B. 15 ft-lbs
 - C. 18 ft-lbs
 - D. 21 ft-lbs
 - E. 24 ft-lbs

- 8. A uniform cable, 30 ft long, weighs 60 lbs and hangs over the edge of a tall building. How much work is done in pulling the cable to the top?
 - A. 900 ft-lbs
 - B. 600 ft-lbs
 - C. 300 ft-lbs
 - D. 1500 ft-lbs
 - E. 1800 ft-lbs

9. Evaluate $\int_{1}^{2} x^{2} \ln x \, dx.$

- A. $8 \ln 2 \frac{7}{3}$
- B. $\frac{4}{3} \ln 2 \frac{2}{9}$
- C. $3 \ln 2 \frac{7}{9}$
- D. $\frac{8}{3} \ln 2 \frac{7}{9}$
- E. $3 \ln 2 3$

10. Evaluate $\int_{0}^{\frac{\pi}{4}} \sec^4 x \, dx.$

- A. $\frac{4}{5}$ B. $\frac{6}{5}$
- C. $\frac{1}{5}$
- D. 1
- E. $\frac{4}{3}$

11. Evaluate $\int \frac{x-1}{(x-2)(x+1)} dx.$

- A. $\ln \left| \frac{1}{3}(x-2) \right| + \ln \left| \frac{2}{3}(x+1) \right| + C$
- B. $\frac{1}{3} \ln |2(x-2)(x+1)| + C$
- C. $\frac{1}{3} \ln \left| (x-2)(x+1)^2 \right| + C$
- D. $\ln |(x-2)(x+1)| + C$
- E. $\ln |(x-2)(x+1)| \ln |x-1| + C$

- 12. The substitution best suited for integrating $\int \sqrt{1-4x^2} dx$ is
 - A. $x = 2\sin u$
 - B. $x = 2 \sec u$
 - $C. \ \ x = \frac{1}{2} \tan u$
 - $D. \ \ x = \frac{1}{2}\sin u$
 - $E. \ \ x = \frac{1}{2} \sec u$