MATH 162 – FALL 2007 – FIRST EXAM SEPTEMBER 12, 2007

STUDENT NAME————————————————————————————————————
STUDENT ID————————————————————————————————————
INSTRUCTOR — — — — — — — — — — — — — — — — — — —
RECITATION INSTRUCTOR————————————————————————————————————
RECITATION TIME————————————————————————————————————

INSTRUCTIONS

- 1. Verify that you have 7 pages.
- 2. Fill in the blank spaces above.
- 3. Use a number 2 pencil to write on your mark-sense sheet.
- 4. On your mark sense sheet, write your name, your student ID number, the division and section numbers of your recitation, and fill the corresponding circles.
- 5. Mark the letter of your response for each question on the mark-sense sheet.
- 6. There are 12 questions. The first two questions are worth 5 points each. The other 10 are worth 9 points each.
- 7. Show as much as possible of your work. Although this exam will be machine graded, in certain situations it may be necessary that we look at your exam.
- 8. No books, notes or calculators may be used.

Answers.

1A 2D 3B 4D 5C 6C

7B 8C 9E 10A 11D 12E

- 1) (5 points) If $\vec{p} = \langle 1, 3, 4 \rangle$ and $\vec{q} = \langle 3, 1, 1 \rangle$, then $|\vec{p} \vec{q}|$ is equal to
- A) $\sqrt{17}$
- B) 4
- C) $\sqrt{26} \sqrt{11}$
- D) 8
- E) $3\sqrt{2}$

- 2) (5 points) Which is true?
- I) The dot product of two vectors is a real number
- II) The cross product of two vectors is a real number
- III) If \vec{A} and \vec{B} are orthogonal, then $\vec{A} \cdot \vec{B} = 0$.
- A) Only I
- B) Only II
- C) Only III
- D) Only I and III
- E) Only II and III

3) (9 points) Find the volume of a parallelepiped if it has one vertex at the origin, and the neighboring vertices at $A(1,0,2)$, $B(2,1,1)$ and $C(1,1,1)$.
A) 1
B) 2
C) 3
D) -1
E) 6
4) (9 points) The area of the planar triangle with vertices $(1,1)$, $(3,2)$ and $(1,-1)$ is
A) 6
B) 4
C) 3
D) 2

E) 1

5)(9 points) Sal, the mule, hauls a barge up the Erie Canal. A rope is attached to the barge, at an angle of 30 degrees to the direction of the canal, and Sal pulls the rope with a force of magnitude F as she trots along. Supposing they cover distance D, how much work is done by Sal?

- A) FD
- B) $\frac{FD}{2}$
- C) $\frac{FD\sqrt{3}}{2}$
- D) $\frac{FD}{\sqrt{3}}$
- E) $\frac{2FD}{\sqrt{3}}$

6)(9 points) The area of the region between the curves $y = \frac{x}{2} + 4$, and $x = y^2 - 4y$ is given by

A)
$$\int_{-4}^{0} \left(y^2 - 4y - \frac{x}{2} - 4 \right) dx$$

B)
$$\int_{-4}^{0} \left(\frac{x}{2} + 2 - \sqrt{4 + x} \right) dx$$

C)
$$\int_{2}^{4} (6y - 8 - y^2) dy$$

D)
$$\int_{2}^{4} (7y - 8 - y^2) dy$$

E)
$$\int_2^4 |y^2 - \frac{9y}{2} - 4| dy$$

7)(9 points) The integral

$$\int_0^1 (\sqrt{x} - x) \ dx$$

represents the area of the region bounded by the curves

A)
$$y = x^2$$
 and $y = x$

B)
$$x = y^2$$
 and $x = y$

C)
$$x = y^2 - 2$$
 and $x = y$

D)
$$y = 6x + 2$$
 and $y = x^2$

E)
$$y = x^2$$
 and $y = 0$.

8)(9 points) Take the region bounded by the curves $y = \sqrt{x}$, and y = x and rotate it about the x-axis. The volume of the solid generated is equal to

A)
$$\frac{\pi}{2}$$

B)
$$\frac{2\pi}{3}$$

C)
$$\frac{\pi}{6}$$

D)
$$\frac{3\pi}{2}$$

E)
$$2\pi$$

- 9) (9 points) Take the region bounded by $y = x^2$ and y = x and rotate it about the line x = 1. Using the method of cylindrical shells, the volume of the solid generated is given by the integral
- A) $2\pi \int_0^1 (x^3 4x^2 + 3x) dx$
- B) $2\pi \int_0^1 (x^3 + 2x^2 + 3x) dx$
- C) $2\pi \int_0^1 (x^3 2x^2 + 3x) dx$
- D) $2\pi \int_0^1 (2x^3 + 2x^2 + 3x) dx$
- E) $2\pi \int_0^1 (x^3 2x^2 + x) dx$

- 10) (9 points) A cubic tank whose sides are 1 m long sits on the ground and it is filled with a liquid of density 100 Kg/m³. If we take the acceleration of gravity $g = 10 \,\mathrm{m/s^2}$, the necessary work to empty the tank by pumping the liquid through its top is, in Joules, equal to
- A) 500
- B) 400
- C) 800
- D) 200
- E) 300