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1. Find the domain of g(x) =
ex

ln 4
√
x− 10

A. (10,∞)

B. [10,∞)

C. (e11,∞)

D. (10, 11) ∪ (11,∞)

E. [10, 11) ∪ (11,∞)

2. Which of the following has a removable discontinuity at x = −3?

A. f(x) =
x2 − 9

x− 3

B. f(x) =
1√
x+ 3

C. f(x) =
x2 − 9

x+ 3

D. ln(x+ 3)

E. 3
√
x+ 3
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3. If f(x) =
x

1 + 2x
, find f−1(1).

A. 1

B. 1
3

C. 3

D. −1
3

E. −1

4. Choose the right statement which describes ALL the horizontal and vertical asymptotes
of the function

f(x) =
ex + 1

ex − 1

A. Horizontal Asymptote(s): y = 1, y = −1, Vertical Asymptote(s): None

B. Horizontal Asymptote(s): y = 1, Vertical Asymptote(s): x = 1

C. Horizontal Asymptote(s): y = 1, Vertical Asymptote(s): x = 0

D. Horizontal Asymptote(s): y = 1, y = −1, Vertical Asymptote(s): x = 0

E. Horizontal Asymptote(s): None, Vertical Asymptote(s): x = 0
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5. Which of the following is TRUE?

I. sin−1
(

sin

(
2π

3

))
=
π

3

II. cos−1
(

cos

(
5π

4

))
= −π

4

III. csc

(
tan−1

(
1

x

))
=
√
x2 + 1

A. I only

B. II only

C. III only

D. I and II only

E. I and III only

6. Find the derivative of y =
ex − e−x

ex + e−x

A. 0

B. 1

C.
2

(ex + e−x)2

D.
4

(ex + e−x)2

E.
1

e2x + e−2x
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7. If

tan y =
2

x2

find y′ when x = −1

A. 1

B.
4

5

C.
−2

5

D.
2

5

E.
−4

5

8. Find f ′(1) if

f(x) = ln

(
x

x2 + 2

)

A.
−1

3

B.
−2

3

C.
1

3

D.
2

3
E. 1
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9. Find the derivative of y = cos2(x2)

A. − sin2(x2)

B. 4x sin(x2) cos(x2)

C. −4x sin(x2) cos(x2)

D. 4x cos(x2)

E. −4x sin(x2)

10. If g(t) = f(v) where v = sin t, then g′(t) =?

A. f(cos t)

B. f ′(cos t)

C. f ′(sin t) + cos t

D. f ′(sin t) cos t

E. f(sin t) cos t
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11. If a certain radioactive substance has a half-life of 7 days, how long, in days, does it take
for the sample to decay to 1

3
of its original amount?

A.
ln 14

ln 2

B.
3 ln 7

ln 2

C.
7 ln 3

ln 2

D.
3 ln 2

ln 7

E.
7 ln 2

ln 3

12. Find the absolute maximum and minimum values, on the interval [0, 1], of the function
f(x) = cos(πx) + sin(πx).

A. max:
√

2; min: −1

B. max: π
4
; min: π

C. max: 2; min: −2

D. max: 1; min: −1

E. max: π; min: 0
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13.

lim
x→0

cos(2x)− 1

x2
=

A. 0

B. 1

C. −1

D. 2

E. −2

14. Determine the value of b so that f(x) = x2 +
b

x3
has an inflection point at x = 1

A. 1

B. −1

6

C.
1

3

D. −1

3

E.
1

6
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15. The graph of f ′, the derivative of the function f , is shown below. Which of the following
statements must be true?

I. f has a relative minimum at x = −3

II. The graph of f has an inflection point at x = −2

III. The graph of f is concave downward for 0 < x < 4

A. I only

B. II only

C. III only

D. I and II only

E. I and III only

16. A person whose height is 6 feet is walking away from the base of a streetlight along a
straight path at a rate of 4 feet per second. If the height of the streetlight is 15 feet, what
is the rate at which the person’s shadow is lengthening?

A.
3

2

B.
8

3

C.
15

4
D. 6

E. 10
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17. If f(x) = x3 − 2x2 − 3x, 0 ≤ x ≤ 2, then find a number c that satisfies the conclusion of
the Mean Value Theorem.

A.
3

4
B. 1

C.
5

4

D.
4

3

E.
3

2

18. Find the area of the largest rectangle that can be inscribed under the curve y = e−x
2

and
above the x-axis.

A.

√
2

e

B.
√

2e

C.
2

e

D.
1√
2e

E.
2

e2
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19. Use a Riemann Sum to estimate the area under the graph of f(x) =
√
x from x = 1 to

x = 4 using three approximating rectangles and left endpoints.

A.
√

1 +
√

2 +
√

3

B.
√

2 +
√

3 +
√

4

C.
√

1 +
√

2 +
√

3 +
√

4

D. 1
3
(
√

1 +
√

2 +
√

3)

E. 1
3
(
√

2 +
√

3 +
√

4)

20. If y(x) =

∫ tan(x)

3

√√
t+ 6t dt, use Part 1 of the Fundamental Theorem of Calculus to

find y′(π
4
).

A.
√

7

B. 2
√

7

C.
√

3π
2

+
√

π
4

D. 2
√

3π
2

+
√

π
4

E. 2
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21. ∫ 4

1

(
3

x
+

3

x2

)
dx =

A. 3 ln 4 +
9

4
B. 3 ln 4 + 3 ln 16

C. 3 ln 4− ln 16

D. 3 ln 4− 15

4

E. 3 ln 4− 3

4

22. Which of the following statements are correct?

I. Two different functions f(x) and g(x) can have the same derivative

II. An antiderivative of 3x2 is x3 + π3

III. If P (x) is an antiderivative of p(x) and Q(x) = P (x)+2, then Q(x) is an antideriva-
tive of p(x)

A. None of them

B. I only

C. II only

D. III only

E. All of them
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23. ∫
x dx√
9− x2

=

A. −1

2
ln
√

9− x2 + C

B. sin−1
x

3
+ C

C. −
√

9− x2 + C

D. −1

4

√
9− x2 + C

E. 2
√

9− x2 + C

24. ∫ π/2

π/6

cotx dx

A. ln
1

2

B. − ln
1

2

C. − ln(2−
√

3)

D. ln(
√

3− 1)

E. ln
1

4
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25. The figure above shows the graph of f(x). Which of the graphs below is

∫ x

0

f(t) dt?

A B C

D E

14


