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1. Suppose the domain of f(x) is [0,∞). If

g(x) = 1− f(x+ 1)

then what is the domain of the function g ?

A. (−∞, 1]

B. (−∞,−1]

C. [−1,∞)

D. [0,∞)

E. [1,∞)

2. If f(x) =
x+ 5

x+ 1
, simplify the expression

f(x)− f(3)

x− 3

A.
−2

x− 3

B.
−1

x+ 1

C.
−4

(x+ 1)2

D.
3− x
x+ 1

E.
x+ 3

x− 3
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3. The curve

y =
1− 2x

x3 − 1

has one horizontal asymptote, y = h, and one vertical asymptote, x = k. What is h+ k ?

A. 1

B. 3

C. −1

D.
1

2

E.
3

2

4. Consider the function

f(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

Which of the following limits exist?

(i) lim
x→0+

f(x) (ii) lim
x→0

f(x) (iii) lim
x→0
|f(x)|

A. (i) only

B. (i) and (iii) only

C. (ii) and (iii) only

D. (ii) only

E. (iii) only
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5. The figure shows the graphs of three functions. One is the position function of a car, one is
the velocity of the car, and one is its acceleration. Find the correct choice.

A. a = acceleration, b = position, c = velocity

B. a = velocity, b = position, c = acceleration

C. a = acceleration, b = velocity, c = position

D. a = position, b = velocity, c = acceleration

E. a = velocity, b = acceleration, c = position

6. Find the limit.

lim
x→2

√
x2 − 4

x− 2

A. Does not exist

B. 0

C. 4

D. 2

E. ∞
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7. Find the limit.

lim
x→0

csc(3x)

cotx

A.
1

3
B. ∞
C. 1

D. Does not exist

E. 3

8. Find the limit.

lim
x→∞

(
1 +

3

x

)4x

A. e4

B. 4

C. e12

D. 12

E. e3/4
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9. The half life of a certain substance is 1000 years. How much of a sample weighing 100 kg
remains after 100 years?

A. 10 kg

B. 10 ln(2) kg

C. 95 kg

D.
100
10
√

2
kg

E. 10 10
√

2 kg

10. If f(x) =
x2 + 3x− 4

x2 − 1
then f ′(x) =

A.
−3x2 − 10x− 3

x4 − 2x2 + 1

B.
−3

x2 − 2x+ 1

C.
2x+ 3

2x

D.
9x2 − 10x− 3

x4 − 2x2 + 1

E.
−3

x2 + 2x+ 1
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11. If f(x) = log10(x) then f ′(e) =

A. 1

B.
1

10

C.
1

e

D.
1

e ln(10)

E.
e

10

12. If f(x) = (1− x2) sin−1(x) then f ′(x) =

A.
−2x√
1− x2

B.
√

1− x2 − 2x sin−1(x)

C. 1− 2x sin−1(x)

D. −2x cos−1(x)

E.
1− x2

1 + x2
− 2x sin−1(x)
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13. If for differentiable functions f(x) and g(x) we have f(2) = 2, f(3) = 5, f ′(2) = −3, f ′(3) = 7
and g(2) = 3, g(3) = 2, g′(2) = −1, g′(3) = −3, then

d

dx
f(g(x))

∣∣∣
x=2

=

A. 3

B. −7

C. 7

D. 21

E. −9

14. If cos(x+ y) = y2 sin(x) then
dy

dx
=

A.
−y2 cos(x)

2y sin(x) + sin(x+ y)

B.
−y2 cos(x)− sin(x+ y)

2y sin(x) + sin(x+ y)

C.
−y2 cos(x)− sin(x+ y)

2y sin(x)

D.
2y sin(x) + y2 cos(x)

− sin(x+ y)

E. Cannot be determined, since one cannot solve for y.
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15. Water is poured into a conical paper cup at the rate of 4 cubic centimeters per second. If
the cup is 18 cm tall and the top has a radius of 6 cm, how fast is the water level rising when
the water is 9 cm deep? (Volume of the cone: V = 1

3
πr2h).

A.
4

9π
cm/s

B.
π

3
cm/s

C.
4π

9
cm/s

D.
4

81π
cm/s

E.
9π

4
cm/s

16. By linearization (differentials), the approximate value of 4
√

17 is

A. 2

B. 63
32

C. 31
16

D. 33
16

E. 65
32
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17. The intervals on which the function f(x) = x4− 4x3 + 4x2 is decreasing and those on which
it is increasing are given by

A. Increases on (−∞, 0) ∪ (1, 2) and decreases on (0, 1) ∪ (2,∞)

B. Decreases on (−∞, 0) ∪ (1, 3) and increases on (0, 1) ∪ (3,∞)

C. Decreases on (−∞, 0) ∪ (1, 2) and increases on (0, 1) ∪ (2,∞)

D. Decreases on (−∞, 2) and increases on (2,∞)

E. None of the above

18. The minimum value of the function f(x) =
3

8
x4 + x3 is

A. −4

B. −3

2
C. −2

D. 0

E. −5

8

10



19. A box with square base and open top must have a volume of 40 cubic inches. What are the
dimensions of the box that minimize the amount of material to build it?

A. 3
√

10× 3
√

10 base with 4 3
√

10 height.

B. 2× 2 base with 10 height.

C.
√

10×
√

10 base with 4 height.

D. 2 3
√

10× 2 3
√

10 base with 3
√

10 height.

E.
√

5×
√

5 base with 8 height.

20. Find an antiderivative of the function f(x) =
(x− 1)2

x

A.
2(x− 1)3

3x2

B.
x2 − 1

x2

C.
1

2
x2 − 2x+ ln |x|

D.
x(x− 1)3

3

E.
(x− 1)2(2x+ 1)

6
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21. Estimate the area under the graph of f(x) = sin(x) from x = 0 to x =
π

2
using three

approximating rectangles and left endpoints. In other words, find the left Riemann sum, L3.

A.
π(3 +

√
3)

12

B.
π(3 +

√
3)

2

C.
π(1 +

√
3)

12

D.
π(1 +

√
3)

4

E.
π(3 +

√
3)

4

22. If a particle is moving at the speed v(t) =
1

t2 + 1
, then the distance it covers from time t = 1

to t =
√

3 is

A.
π

3

B.
π

4

C.
π

2
D. π

E.
π

12
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23. Suppose

g(x) =

∫ x2

4

et
2

dt

Find g′(2), the derivative of g(x) at x = 2.

A. 4e16

B. 0

C. 4e4

D. e4

E. e16

24. Evaluate the indefinite integral ∫ (
sinhx+ sinh3 x

)
dx

Hint: cosh2 x− sinh2 x = 1

A. coshx+ 1
4

sinh3 x tanhx+ C

B. 1
2
(cosh2 x− 1) + 1

4
sinh4 x+ C

C. 1
3

cosh3 x+ C

D. coshx(1 + sinh2 x) + C

E. coshx+ 1
4
(cosh2 x− 1)2 + C
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25.

∫ π

0

sin t
√

1 + cos t dt =

A. −2π
√
π

3

B.
4
√

2

3

C.
4

3
D. 0

E. −
√
π
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