Name	ten-digit Student ID number
Recitation Instructor	Div-Sec
	Recitation Time

Instructions:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. The exam has 25 problems, each worth 8 points, for a total of 200 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet. Use a number 2 pencil on the answer sheet. Be sure to fill in the circles for each of the answers of the 25 exam questions.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, or calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

Name ___

1. Determine the graph corresponding to the equation $x^2 - 2x + y^2 + 2y = -1$.

В.

D.

E.

2. Determine the graph that represents $y = \frac{1}{(x+1)(x+2)}$.

D.

E.

3. The domain of
$$f(x) = \frac{1}{\sqrt{(x-1)(x-2)}}$$
 is

B.
$$(-\infty,1)\cup(2,\infty)$$

C.
$$(2,\infty)$$

D.
$$(1,2)\cup(2,\infty)$$

E.
$$(-\infty, 1)$$

4. If
$$f(x) = \frac{1}{x} + x$$
 and $g(x) = x - 8$ then $f \circ g(9) =$

5.
$$\lim_{x \to \infty} \frac{\sqrt{4x^2 + 2x}}{3x + 1} =$$

- A. ∞
- B. $\frac{4}{3}$
- C. 0
- D. $\frac{2}{3}$
- E. does not exist

6. The curve below is the graph of f(x). Which of the following statements are true?

- 1) f(x) is continuous at x=2
- 2) f(x) is differentiable at x=2
- $3) \lim_{x\to 3} f(x) = 1$

- A. just 1)
- B. just 1) and 2)
- C. just 1) and 3)
- D. all three
- E. just 3)

7. If
$$xy^3 = x - y$$
 then $\frac{dy}{dx} =$

$$A. \quad \frac{1-y^2}{1+2xy^2}$$

B.
$$\frac{1-y^3}{1-3xy^2}$$

C.
$$\frac{1+y^3}{1+3xy^2}$$

D.
$$\frac{1+y^2}{1+3xy^2}$$

E.
$$\frac{1-y^3}{1+3xy^2}$$

8. A man stands on a 100 ft building and throws a ball straight up with initial velocity 80 ft/sec. What is the ball's maximum height? ($s = -16t^2 + v_0t + s_0$)

- A. 100 ft
- B. 200 ft
- C. 300 ft
- D. 400 ft
- E. none of these

$$9. \ \frac{d}{dx}\ln(x^2\cos^3(x)) =$$

A.
$$\frac{2}{x} - 3\tan x$$

$$B. \quad \frac{1}{x^2} - \sec^3 x$$

C.
$$\frac{2}{x} + 3 \sec x$$

$$D. \quad \frac{2}{x} - 3 \sec x$$

$$10. \ \frac{d}{dx} \ (x^{\ln x}) =$$

A.
$$(\ln x)x^{\ln x}$$

B.
$$2(\ln x)x^{\ln x + 1}$$

C.
$$x^{\ln x}$$

D.
$$2(\ln x)x^{\ln x}$$

E.
$$2(\ln x)x^{\ln x - 1}$$

11. $\frac{d}{dx} \cosh(x)$ at $x = \ln 2$ equals

- A. $\frac{3}{2}$
- B. 2
- C. $\frac{3}{4}$
- D. 3
- E. 4

12. A water trough is 30 ft long and a cross-section has the shape of a triangle that is 8 ft wide at the top and has height 3 ft. The trough is being filled at the rate of 40 ft³/min. How fast is the water level rising when the water is 2 ft deep?

- A. $\frac{1}{8}$ ft/min
- B. $\frac{1}{4}$ ft/min
- C. $\frac{1}{2}$ ft/min
- D. 1 ft/min
- E. 2 ft/min

13. Find f'(x) if it is known that $\frac{d}{dx}[f(4x)] = x^2$.

- A. $\frac{x^2}{64}$
- B. $\frac{x^2}{16}$
- C. $\frac{x^2}{4}$
- D. x^2
- E. $4x^2$

14. If $f(x) = 4x^2$ $0 \le x \le 1$, $= (x-3)^2$ $1 < x \le 4$, then the absolute maximum value of f is

- A. 1
- B. 2
- C. 5
- D. 3
- E. 4

15. Find all values of t for which the function

$$y = \sin^2 t + \cos t$$

has an absolute maximum on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

A.
$$\left\{-\frac{\pi}{3}, \frac{\pi}{3}\right\}$$

$$B. \left\{-\frac{\pi}{6}, \frac{\pi}{6}\right\}$$

C.
$$\left\{-\frac{\pi}{2}, -\frac{\pi}{6}\right\}$$

D.
$$\left\{\frac{\pi}{6}, \frac{\pi}{2}\right\}$$

E.
$$\left\{\frac{\pi}{6}, \frac{\pi}{3}\right\}$$

Problems 16, 17 and 18 refer to the function $f(x) = 2x^3 + 3x^2 - 12x$.

- 16. Find all open intervals where f is increasing.
- A. $(-\infty, -2)$
- B. (-2,1)
- C. $(1,\infty)$
- D. $(-2,1) \cup (1,\infty)$
- E. $(-\infty, -2) \cup (1, \infty)$

17. Find all open intervals where f is convex up.

- A. $\left(\frac{1}{2},\infty\right)$
- B. $\left(-\infty, \frac{1}{2}\right)$
- C. $\left(-\frac{1}{2},\infty\right)$
- D. $\left(-\infty, -\frac{1}{2}\right)$
- $E. \left(-\frac{1}{2}, \frac{1}{2}\right)$
- 18. Find all values of x for which f has a local minimum.
- A. {1}
- B. {-2}
- C. $\{-2, 1\}$
- D. $\left\{-2, \frac{1}{2}\right\}$
- E. $\left\{-2, \frac{1}{2}, 1\right\}$

19.
$$\lim_{t\to 0} \frac{\cos(2t)-1}{t^2} =$$

- A. 2
- B. -2
- C. 4
- D. -4
- E. 0

20.
$$\lim_{x\to 2} \frac{(x-2)^2}{|x-2|} =$$

- A. 1
- B. -1
- C. 0
- D. 2
- E. the limit does not exist

21. The maximum area for a rectangle inscribed into the ellipse

$$\frac{x^2}{4} + \frac{y^2}{18} = 1$$
 is

- A. $\sqrt{2}$
- B. $2\sqrt{2}$
- C. $6\sqrt{2}$
- D. $12\sqrt{2}$
- E. $24\sqrt{2}$

22.
$$\int_{-1}^{1} (x^2 + 2x + 1) dx =$$

- B. -1C. $1\frac{2}{3}$
- D. $-1\frac{2}{3}$
- **E**. 0

23.
$$\int_{0}^{\sqrt{3}} t\sqrt{t^2+1} \ dt =$$

- A. $\frac{1}{3}$
- B. $\frac{2}{3}$
- C. 1
- D. $\frac{7}{3}$
- E. $\frac{5}{3}$

24. If
$$g(x) = \int_{x^2}^{x} \frac{dt}{t}$$
 then $g'(x) =$

- A. $\frac{1}{x^2}$
- B. $\frac{1}{x}$
- C. $\frac{1}{x} \frac{1}{x^2}$
- $D. \quad \frac{1}{x} + \frac{1}{x^2}$
- E. $-\frac{1}{x}$
- 25. Let f(x) be continuous on [-1,3] and assume that f'(x) exist on (-1,3). If f(-1) = -2 and f(3) = 2 then which of the following statements are always true?
- 1) There is a c such that -1 < c < 3 and f(c) = 1.
- 2) There is a c such that -1 < c < 3 and f'(c) = 1.
- 3) $-2 \le f(x) \le 2$ for all x such that $-1 \le x \le 3$.
- A. just 1)
- B. just 2)
- C. just 3)
- D. just 1) and 2)
- E. just 1) and 3)