MA 101 & 101E	FINAL EXAM	December 2003	
Name	Student	Student ID Number	
Lecturer	Recitation	Recitation Instructor	

INSTRUCTIONS:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 23 problems, each worth 8.5 points. You get 4.5 points for coming; the maximum score is 200 points.
- 3. For each problem circle the answer of your choice, and also mark it on the scantron sheet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

1.
$$\lim_{x\to 2^+} \frac{2-x}{x^2-5x+6} =$$

- A. -4
- B. ∞
- C. $-\infty$
- D. 1
- E. 0

$$2. \lim_{x \to 0} x \sin \frac{1}{x} =$$

- **A**. ∞
- B. 2
- C. 1
- D. 0
- E. limit does not exist

$$3. \ \frac{d}{ds}(s\ln s) =$$

- A. $\ln s$
- B. $1 + \ln s$
- C. $\frac{\ln s}{s}$
- D. 1
- E. $(s+1) \ln s$

4. The 47th derivative of
$$f(x) = \cos 2x$$
 is

- A. $-\sin 2x$
- B. $-2^{47} \sin 2x$
- C. $\sin 2x$
- D. $2^{47} \sin 2x$
- E. $-2^{47}\cos 2x$

5. If $xe^y - ye^x = \pi$ then dy/dx =

A.
$$\frac{y}{x}$$

B.
$$\frac{\pi + ye^x}{xe^y}$$

$$C. \quad \frac{ye^x + e^y}{xe^y + e^x}$$

$$D. \frac{y - e^x}{x - e^y}$$

$$E. \frac{ye^x - e^y}{xe^y - e^x}$$

6. If $g(t) = f(\sin t)$ then g'(t) =

- A. $f(\cos t)$
- B. $f'(\cos t)$
- C. $f'(\sin t) + \cos t$
- D. $f'(\sin t)\cos t$
- E. $f(\sin t)\cos t$

- 7. The slope of the tangent line to the curve $y = \frac{2}{x+3}$, at the point where x = -2, is
 - A. -2
 - B. -1
 - C. 0
 - D. 1
 - E. 2

- 8. Consider the following statements for a function f(x) defined for $-\infty < x < \infty$:
 - I. If f is differentiable at -3 then it is continuous at -3.
 - II. If f is continuous at -3 then $f(-3) = \lim_{x \to -3} f(x)$.
 - III. If $f(-3) = \lim_{x \to -3} f(x)$ then f is continuous at -3.

Which is true?

- A. Only I
- B. Only II
- C. Only I and II
- D. Only II and III
- E. All three are true

- 9. On the first day of Christmas (at 8 a.m.) my true love gave me 10 grams of radioactive substance. On the fourth day of Christmas (again at 8 a.m.) I had 3 grams left. What is the half-life of that substance, in days?
 - A. $\frac{\ln 10/3}{4}$
 - B. $\frac{\ln 8}{\ln 10/3}$
 - C. 2
 - D. $\frac{10 \ln 2}{3}$
 - E. Not possible to determine

10. If $g(x) = 1/4^x$ then g'(1) =

- A. $\frac{1}{4}$
- B. $-\frac{1}{4}$
- C. ln 4
- D. $-\ln 4$
- E. $-\frac{\ln 2}{2}$

- 11. A particle moves along a line x = y. When it reaches the point (1,1), its x coordinate increases at rate 3 ft/s. At what rate, in ft/s, does its distance to the point (1,0) change at this moment?
 - A. $\sqrt{2}$
 - B. $2\sqrt{2}$
 - C. 3
 - D. $3\sqrt{2}$
 - E. 6

12. Linear approximation gives for $\sqrt[3]{24}$ the value

- A. $3\frac{1}{27}$
- В. 3
- C. $2\frac{8}{9}$
- D. $2\frac{5}{6}$
- E. $2\frac{2}{3}$

13. The maximum of $(1-x)e^x$ on (-1,1) is

- A. 0
- B. 1
- C. 2/e
- D. 2e
- E. e

14. Suppose an everywhere differentiable function h satisfies h(2) = 4, h(5) = 6. The mean value theorem implies that there is a

- A. c in (4,6) such that h'(c) = 2/3
- B. c in (4,6) such that h'(c) = 3/2
- C. c in (2,5) such that h'(c) = 2/3
- D. c in (2,5) such that h'(c) = 3/2
- E. c in (2,5) such that h'(c) = 5

15. If $\varphi''(x) = (x-1)^2(x+1)$, the graph of φ can be

16. If
$$g'(x) = x^2 - 1$$
, $g(2) = 1/3$ then $g(0) =$

- A. -1/3
- B. 0
- C. 1/2
- D. 2/3
- E. 1

- 17. For F a differentiable function on $(-\infty, \infty)$ and c a real number, which statement is true?
 - I. If F has a local maximum at c then F'(c) = 0.
 - II. If F'(c) = 0 then F has a local maximum or minimum at c.
 - A. Neither is true
 - B. Only I is true
 - C. Only II is true
 - D. Both are true
 - E. None of the above answers is correct

18.
$$\sum_{i=1}^{3} (2i-1)^2 =$$

- A. 7
- B. 15
- C. 22
- D. 27
- E. 35

MA 161 & 161E

FINAL EXAM

December 2003

19.
$$\int_{1}^{4} \frac{dx}{x\sqrt{x}} =$$

20. If
$$\int_{3}^{2} f(x)dx = 3$$
 and $\int_{5}^{2} f(x)dx = 4$ then $\int_{3}^{5} f(x)dx =$

B.
$$-1$$

MA 161 & 161E

21. If
$$\psi(x) = \begin{cases} 1, & \text{if } x \leq 1 \\ 1/x, & \text{if } x > 1 \end{cases}$$
 then $\int_0^e \psi(x) dx =$

B.
$$1\frac{1}{2}$$

E.
$$2e + 1$$

22. If
$$J(x) = \int_{x}^{2x^2} (\ln t)^{1/2} dt$$
 then $J'(e) =$

C.
$$\sqrt{2} - 2e \ln 2$$

D.
$$\ln 4 - e\sqrt{2}$$

E.
$$4e\sqrt{2 + \ln 2} - 1$$

23.
$$\int_{0}^{1} \frac{e^{x}}{2e^{x}-1} dx =$$

A.
$$\frac{e}{2e-1}$$

$$B. \ \frac{\ln(2e-1)}{2}$$

$$C. \quad \frac{e-1}{2e-3}$$

$$D. \ \frac{e-1}{2e-1}$$

E.
$$\ln \frac{e}{(2e-1)}$$