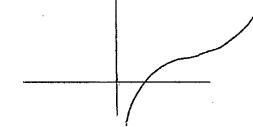
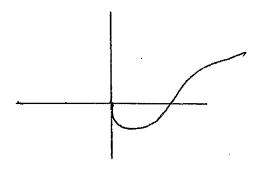
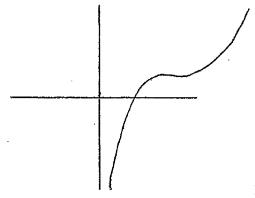

- 1. If $f(x) = 2x^3 + 3x^2 36$ on what interval is f both concave up and decreasing?
 - A. $(0,\infty)$
 - B. $\left(-\frac{1}{2},0\right)$
 - C. (-1,0)
 - D. $\left(-1, -\frac{1}{2}\right)$
 - E. $(-\infty, -1)$

2. The graph of $g(x) = x \ln x$ looks most like


A.


В.

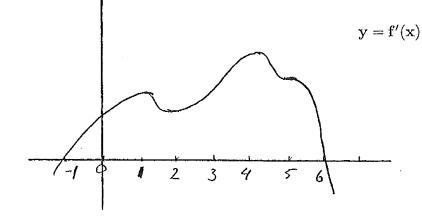

C.

D.

E.

1

- 3. Let $f(x) = \frac{x^2}{x-2}$. On what interval(s) is f decreasing?
- A. $(-\infty,0)$
- B. $(-\infty, 0) \cup (4, \infty)$
- C. (0,4)
- D. $(0,2)\cup(2,4)$
- E. $(4,\infty)$


- 4. Let $f(x) = x^4 8x^2$ for $-1 \le x \le 3$. If m_1 is the absolute maximum of f and m_2 is the absolute minimum find $m_1 + m_2$.
 - A. 2
 - В. 9
 - C. -7
 - D. -16
 - E. 0

MA 161

EXAM III

SPRING 2012

5.

The graph above is for y = f'(x). For what value(s) of x does f have an inflection point?

- A. $\{-1, 6\}$
- B. $\{2, 5\}$
- C. $\{1, 2, 4\}$
- D. $\{1, 2, 6\}$
- E. $\{-1, 5, 6\}$

6. Let
$$g'(x) = (x-1)x^2(x-2)(x+1)$$
.

For what values of x does g have local maxima?

- A. $\{-1,0\}$
- B. $\{-1, 2\}$
- C. $\{0, 2\}$
- D. {1,2}
- E. {1}

7. Find $\lim_{x \to 0} \frac{\cos(2x) - 1}{x^2}$.

- A. -2
- B. 2
- C. 1
- D. 0
- E. $\frac{1}{2}$

8. Find the differential of the following function.

$$y = \frac{\sinh(x)}{x^2 + 1}$$

- A. $\frac{\left(\sinh(x)x^2 + 2\cosh(x)x + \sinh(x)\right)}{(x^2 + 1)^2} dx$
- B. $\frac{\left(\cosh(x)x^2 + 2\sinh(x)x \sinh(x)\right)}{(x^2 + 1)^2} dx$
- C. $\frac{\left(\sinh(x)x^2 2\sinh(x)x + \cosh(x)\right)}{(x^2 + 1)^2} dx$
- D. $\frac{\left(\cosh(x)x^2 2\sinh(x)x + \sinh(x)\right)}{(x^2 + 1)^2} dx$
- E. $\frac{(\cosh(x)x^2 2\sinh(x)x + \cosh(x))}{(x^2 + 1)^2} dx$

9. Find the linearization of f(x) at a = 1.

$$f(x) = \sin(\ln(x))$$

A.
$$L(x) = x + 2$$

B.
$$L(x) = x - 1$$

C.
$$L(x) = \frac{1}{2}x + 2$$

D.
$$L(x) = \frac{1}{2}x - 2$$

E.
$$L(x) = x - 3$$

10. If R the total resistance across a circuit is given by $1/R = 1/R_1 + 1/R_2$ for two resistors with resistances R_1 and R_2 , how fast is the total resistance changing when $R_1 = 5$, $R_2 = 10$ and R_1 is changing at 1 ohm/s and R_2 is changing at 2 ohm/s?

- 11. What is the half–life of an element which decays to 75% of its original mass after one year?
 - A. $-\ln(2)/\ln(3/4)$
 - B. $-\ln(3/4)/\ln(2)$
 - C. $-\ln(2)/\ln(3)$
 - D. $-\ln(3)/\ln(2/3)$
 - E. $-\ln(3)/\ln(2/5)$

- 12. Suppose the radius of a circle is given by r(t) = 2t + 1. How fast is the area changing at t = 1/2?
 - A. $\pi/2$
 - Β. π
 - C. 4π
 - D. 8π
 - E. 2π

- 13. The functions f(x) = |x|, $g(x) = x^2$, and $h(x) = x^4$ each have a local minimum at x = 0. The first derivative test can be applied to prove this
 - A. just for g(x).
 - B. just for g(x) and h(x).
 - C. just for f(x).
 - D. just for g(x) and f(x).
 - E. for all three.

14. Find $\lim_{x\to 0^+} x^{\sqrt{x}}$.

- A. 0
- B. $\frac{1}{2}$
- C. 1
- D. 2
- E. ∞